import streamlit as st import cv2 import tempfile import torch import numpy as np from ultralytics import YOLO from PIL import Image from io import BytesIO import requests @st.cache_resource def load_yolo_model(): return YOLO("yolov8n.pt") def analyze_with_deepseek(text): prompt = f"请分析学生的以下行为并提供教学建议:{text}" return f"分析:学生可能在积极参与小组讨论。建议教师鼓励团队合作,提升学习主动性。" def process_video(uploaded_file, model): tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) cap = cv2.VideoCapture(tfile.name) frames = [] heatmap = np.zeros((480, 640)) behavior_summary = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.resize(frame, (640, 480)) results = model(frame) boxes = results[0].boxes.xyxy.cpu().numpy() if results else [] for box in boxes: x1, y1, x2, y2 = map(int, box[:4]) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cx, cy = int((x1+x2)/2), int((y1+y2)/2) heatmap[cy, cx] += 1 frames.append(frame) behavior_summary.append("检测到学生行为") cap.release() return frames, heatmap, behavior_summary def display_heatmap(heatmap): import matplotlib.pyplot as plt import seaborn as sns fig, ax = plt.subplots() sns.heatmap(heatmap, cmap="YlOrRd", ax=ax) st.pyplot(fig) st.title("🎓 学生课堂行为自动识别与智能反馈系统") st.markdown("---") model = load_yolo_model() uploaded_file = st.file_uploader("请上传课堂视频(mp4格式)", type=["mp4"]) if uploaded_file: st.video(uploaded_file) with st.spinner("正在分析视频..."): frames, heatmap, behavior_summary = process_video(uploaded_file, model) st.success("分析完成!") st.subheader("📌 注意力热力图") display_heatmap(heatmap) st.subheader("📊 行为语义分析") for idx, summary in enumerate(behavior_summary[:3]): text_analysis = analyze_with_deepseek(summary) st.info(f"帧 {idx+1}: {text_analysis}") st.subheader("📄 教学优化建议(示例)") st.markdown("- 增加互动提问频次") st.markdown("- 鼓励小组讨论与合作") st.markdown("- 适当调整教学节奏,吸引注意力") st.download_button("📥 导出教学分析报告", data="报告内容示例...", file_name="teaching_report.txt")