File size: 4,020 Bytes
ba26326 fe8afa3 ba26326 b4df3c4 54e82cb ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 fe8afa3 ba26326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
library_name: transformers
base_model: Heralax/etiquette-pretrain
tags:
- generated_from_trainer
model-index:
- name: mannerstral
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
Data generated with [Augmentoolkit](https://github.com/e-p-armstrong/augmentoolkit)
<!-- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) -->
<details><summary>See training config</summary>
axolotl version: `0.4.1`
```yaml
base_model: Heralax/etiquette-pretrain
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: hidden_manners_openended_plain_qa_list.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: hidden_manners_normal_plain_qa_list.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: hidden_manners_negative_plain_qa_list.jsonl
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./manners-finetune-1
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
shuffle_merged_datasets: true
wandb_project: mannerstral
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 2
eval_batch_size: 1
num_epochs: 6
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000020
weight_decay: 0
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
chat_template: chatml
warmup_ratio: 0.5
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 3
debug:
deepspeed: deepspeed_configs/zero2.json
special_tokens:
pad_token: "<|end_of_text|>"
```
</details><br>
# Mannerstral 7b
A must-have for shut-in AI nerds everywhere, this LLM is a domain expert on manners and etiquette. Particularly, the manners and etiquette of the previous century, because all I had was Project Gutenberg.
This model is very tightly focused on factual question answer. I find that these models can be a bit subject to leading questions... I'm working on a specific idea for a countermeasure but it will take some time.
## Model Quirks
- ChatML
- No generalist assistant data included, but it seems capable-ish of it still
- Data generated with llama 3 70b and llama 3 8b
- Low temperature recommended, screenshots use 0
- No special tokens added
- Subject to leading questions -- if you ask it how to politely welcome a guest in one message, and then how to politely punch someone, it will probably not correct you the second time (as opposed to possibly correcting you if you asked how to punch someone in the first message).
- Prompting may be able to ameliorate this.
Examples:
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 5
- gradient_accumulation_steps: 6
- total_train_batch_size: 60
- total_eval_batch_size: 5
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 24
- num_epochs: 6
### Training results
"it is considered a serious breach of etiquette to throw anyone out of a window" I think it came out all right.
### Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
|