File size: 23,494 Bytes
51b6f6f 4aa303a 51b6f6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
---
license: apache-2.0
model_name: Breeze-7B-Instruct-v0_1
base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
inference: false
model_creator: MediaTek-Research
model_type: mistral
prompt_template: '{prompt} '
quantized_by: Heng666
language:
- en
- zh
tags:
- awq
---
# Breeze-7B-Instruct-v0_1 - AWQ
- Model creator: [MediaTek-Research](https://huggingface.co/MediaTek-Research)
- Original model: [Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
<!-- description start -->
## Description
This repo contains AWQ model files for [MediaTek-Research's Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1).
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of Llama AWQ models for high-throughput concurrent inference in multi-user server scenarios.
As of September 25th 2023, preliminary Llama-only AWQ support has also been added to [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference).
Note that, at the time of writing, overall throughput is still lower than running vLLM or TGI with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](Heng666/Breeze-7B-Instruct-v0_1-AWQ)
* [AdaptLLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Unknown
```
{prompt}
```
<!-- prompt-template end -->
<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters
Models are released as sharded safetensors files.
<!-- README_AWQ.md-provided-files end -->
<!-- README_AWQ.md-use-from-vllm start -->
## Serving this model from vLLM
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
```shell
python3 python -m vllm.entrypoints.api_server --model Heng666/Breeze-7B-Instruct-v0_1-AWQ --quantization awq --dtype half
```
Note: at the time of writing, vLLM has not yet done a new release with support for the `quantization` parameter.
If you try the code below and get an error about `quantization` being unrecognised, please install vLLM from Github source.
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="Heng666/Breeze-7B-Instruct-v0_1-AWQ", quantization="awq", dtype="half")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->
<!-- README_AWQ.md-use-from-python start -->
## How to use this AWQ model from Python code
### Install the necessary packages
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
```shell
pip3 install autoawq
```
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```
### You can then try the following example code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_name_or_path = "Heng666/Breeze-7B-Instruct-v0_1-AWQ"
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
max_new_tokens=512
)
print("Output: ", tokenizer.decode(generation_output[0]))
"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
"""
```
<!-- README_AWQ.md-use-from-python end -->
<!-- README_AWQ.md-compatibility start -->
## Compatibility
The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) merged AWQ support on September 25th, 2023: [TGI PR #1054](https://github.com/huggingface/text-generation-inference/pull/1054). Use the `:latest` Docker container until the next TGI release is made.
At the time of writing (25th September) TGI's PR appears not to work with 70B models, but this is likely to be fixed quickly.
<!-- README_AWQ.md-compatibility end -->
# Original model card: Breeze-7B-Instruct-v0_1
Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) is the base model for the Breeze-7B series.
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) is a slightly modified version of
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.
The current release version of Breeze-7B is v0.1.
Practicality-wise:
- Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.
Performance-wise:
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
## Demo
[Play Demo Here](https://huggingface.co/spaces/MediaTek-Research/Demo_Breeze-7B-Instruct-v0.1)
## Features
- Breeze-7B-Base-v0_1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 8k-token context length
- Breeze-7B-Instruct-v0_1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 8k-token context length
- Multi-turn dialogue (without special handling for harmfulness)
- Breeze-7B-Instruct-64k-v0_1
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
- 64k-token context length
- Multi-turn dialogue (without special handling for harmfulness)
## Model Details
- Breeze-7B-Base-v0_1
- Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-v0_1
- Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
- Breeze-7B-Instruct-64k-v0_1
- Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
- Model type: Causal decoder-only transformer language model
- Language: English and Traditional Chinese (zh-tw)
## Base Model Performance
**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**.
| Models | |↑ TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) |
|----------------------------------------------|--------|--------------|-------------|-------------|------------|
| | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
| | | 5 shot | 3 shot | 5 shot | 5 shot |
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B | 63.10 | 84.57 | 49.31 | 77.42 |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
| [**Breeze-7B-Base-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
\* Few-shot learning cannot effectively guide the model to generate the proper answer.
## Chat Model Performance
**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
**MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments).
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**.
We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.
| Models | |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MT-Bench (Score) | MMLU (ACC) | MMLU (ACC) |
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------|
| | |TC, Chat |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat |EN, Knowledge|EN, Knowledge|
| | |0 shot | 0 shot | 5 shot | 3 shot | 0 shot |0 shot | 0 shot | 5 shot |
| [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | 40.27 |7.9 | 70.00 | |
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
| [**Breeze-7B-Instruct-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
| [**Breeze-7B-Instruct-64k-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | |
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B |4.2 | 28.08 | | | 31.25 | -* | 42.72 | |
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
| Details on MT-Bench-tw (0 shot):<br/>Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
| Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
| **Breeze-7B-Instruct-v0_1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 |
| **Breeze-7B-Instruct-64k-v0_1** | 6.1 | 5.3 | 3.7 | 2.9 | 4.2 | 7.0 | 6.7 | 8.3 | 5.5 |
| Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
| Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
| Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
| Details on TMMLU+ (0 shot):<br/>Model | STEM | Social Science | Humanities | Other | ↑ AVG |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
| Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | 44.79 |
| gpt-3.5-turbo | 41.56 | 46.72 | 36.73 | 42.03 | 41.76 |
| **Breeze-7B-Instruct-v0_1** | 37.41 | 46.81 | 42.06 | 40.16 | 41.61 |
| **Breeze-7B-Instruct-64k-v0_1** | 37.88 | 46.35 | 40.31 | 39.40 | 40.99 |
| Qwen-7B-Chat | 35.44 | 46.22 | 38.35 | 40.06 | 40.02 |
| Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | 29.47 |
| Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | 28.08 |
## Inference Performance
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).
| Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|--------------------------------------------------------------------|-------------------|--------------------------|
| Yi-6B-Chat | 10.62 | 5.2k |
| **Breeze-7B-Instruct-v0_1** | 10.74 | 11.1k |
| **Breeze-7B-Instruct-64k-v0_1** | 10.74 | 88.8k |
| Qwen-7B-Chat | 10.86 | 9.8k |
| Qwen-14B-Chat | 18.89 | 9.8k |
| Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
| Taiwan-LLM-7B-v2.1-chat | 26.26 | 2.2k |
| Taiwan-LLM-13B-v2.0-chat | 36.80 | 2.2k |
| Yi-34B-Chat | 43.71 | 4.5k |
## Long-context Performance
TBD
## Use in Transformers
First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"MediaTek-Research/Breeze-7B-Instruct-v0_1",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2" # optional
)
```
The structure of the query is
```txt
<s>SYS_PROMPT [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST]
```
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user.
The suggested default `SYS_PROMPT` is
```txt
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.
```
We also integrate `chat_template` into [tokenizer_config.json](tokenizer_config.json), so you can `apply_chat_template` to get the prompt.
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")
>>> chat = [
... {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
... {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
... {"role": "user", "content": "太棒了!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. [INST] 你好,請問你可以完成什麼任務? [/INST] 你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。 [INST] 太棒了! [/INST] "
# Tokenized results
# ['▁', '你好', ',', '請問', '你', '可以', '完成', '什麼', '任務', '?']
# ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
# ['▁', '太', '棒', '了', '!']
```
## Citation
```
@article{breeze7b2024,
title={},
author={},
journal={arXiv},
year={2024}
}
```
``` |