Update README.md
Browse files
README.md
CHANGED
|
@@ -3,197 +3,126 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
-
|
| 34 |
-
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
[
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Introduction
|
| 7 |
+
|
| 8 |
+
Reinforcement learning (RL) (e.g., GRPO) helps with grounding because of its inherent objective alignmentβrewarding successful clicksβrather than encouraging long textual Chain-of-Thought (CoT) reasoning. Unlike approaches that rely heavily on verbose CoT reasoning, GRPO directly incentivizes actionable and grounded responses. Based on findings from our [blog](https://huggingface.co/blog/HelloKKMe/grounding-r1), we share state-of-the-art GUI grounding models trained using GRPO.
|
| 9 |
+
|
| 10 |
+
# Performance
|
| 11 |
+
|
| 12 |
+
We follow the standard evaluation protocol and benchmark our model on three challenging datasets. Our method consistently achieves the best results among all open-source model families. Below are the comparative results:
|
| 13 |
+
|
| 14 |
+
| **Model** | **Size** | **Open Source** | **ScreenSpot-V2** | **ScreenSpotPro** | **OSWORLD-G** |
|
| 15 |
+
|-------------------|:--------:|:---------------:|:-----------------:|:-----------------:|:-----------------:|
|
| 16 |
+
| OpenAI CUA | β | β | 87.9 | 23.4 | β |
|
| 17 |
+
| Claude 3.7 | β | β | 87.6 | 27.7 | β |
|
| 18 |
+
| JEDI-7B | 7B | β
| 91.7 | 39.5 | 54.1 |
|
| 19 |
+
| SE-GUI | 7B | β
| 90.3 | 47.0 | β |
|
| 20 |
+
| UI-TARS | 7B | β
| 91.6 | 35.7 | 47.5 |
|
| 21 |
+
| UI-TARS-1.5* | 7B | β
| 89.7* | 42.0* | 64.2* |
|
| 22 |
+
| UGround-v1-7B | 7B | β
| β | 31.1 | 36.4 |
|
| 23 |
+
| Qwen2.5-VL-32B-Instruct | 32B | β
| 91.9* | 48.0 | 59.6* | |
|
| 24 |
+
| UGround-v1-72B | 72B | β
| β | 34.5 | β |
|
| 25 |
+
| Qwen2.5-VL-72B-Instruct | 72B | β
| 94.00* | 53.3 | 62.2* |
|
| 26 |
+
| UI-TARS | 72B | β
| 90.3 | 38.1 | β |
|
| 27 |
+
| Grounding-R1 (Ours) | 7B | β
| 92.4 <sub>*(β +2.7)*</sub> | 50.1<sub>*(β +8.1)*</sub> | 67.7 <sub>*(β +3.5)*</sub> |
|
| 28 |
+
| Grounding-R1 (Ours) | 32B | β
| 93.2 <sub>*(β +1.3)*</sub> | 53.6 <sub>*(β +5.6)*</sub> | 61.9<sub>*(β +2.3)*</sub> |
|
| 29 |
+
| Grounding-R1 (Ours) | 72B | β
| 94.8<sub>*(β +0.8)*</sub> | 58.4 <sub>*(β +5.1)*</sub> | 66.7<sub>*(β +4.5)*</sub> |
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
> **Note:**
|
| 33 |
+
> - Model size is indicated in billions (B) of parameters.
|
| 34 |
+
> - A dash (β) denotes results that are currently unavailable.
|
| 35 |
+
> - A superscript asterisk (οΉ‘) denotes our evaluated result.
|
| 36 |
+
> - UI-TARS-1.5 7B, Qwen2.5-VL-32B-Instruct, and Qwen2.5-VL-72B-Instruct are applied as our baseline models.
|
| 37 |
+
> - β indicates the performance improvement (β) of our model compared to its baseline.
|
| 38 |
+
|
| 39 |
+
# Inference
|
| 40 |
+
Below is a code snippet demonstrating how to run inference using a trained model.
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from PIL import Image
|
| 44 |
+
from qwen_vl_utils import process_vision_info, smart_resize
|
| 45 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 46 |
+
import torch
|
| 47 |
+
import re
|
| 48 |
+
|
| 49 |
+
SYSTEM_PROMPT = '''
|
| 50 |
+
You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. The image resolution is height {height} and width {width}. For elements with area, return the center point.
|
| 51 |
+
|
| 52 |
+
Output the coordinate pair exactly:
|
| 53 |
+
(x,y)
|
| 54 |
+
'''
|
| 55 |
+
SYSTEM_PROMPT=SYSTEM_PROMPT.strip()
|
| 56 |
+
|
| 57 |
+
# Function to extract coordinates from model output
|
| 58 |
+
def extract_coordinates(raw_string):
|
| 59 |
+
try:
|
| 60 |
+
matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
|
| 61 |
+
return [tuple(map(int, match)) for match in matches][0]
|
| 62 |
+
except:
|
| 63 |
+
return 0,0
|
| 64 |
+
|
| 65 |
+
# Load model and processor
|
| 66 |
+
model_path = "HelloKKMe/grounding-r1-72B"
|
| 67 |
+
max_new_tokens = 32
|
| 68 |
+
|
| 69 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 70 |
+
model_path,
|
| 71 |
+
torch_dtype=torch.bfloat16,
|
| 72 |
+
attn_implementation="flash_attention_2",
|
| 73 |
+
device_map="auto"
|
| 74 |
+
)
|
| 75 |
+
processor = AutoProcessor.from_pretrained(
|
| 76 |
+
model_path,
|
| 77 |
+
min_pixels=3136,
|
| 78 |
+
max_pixels= 4096 * 2160
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Load and resize image
|
| 82 |
+
image = Image.open("file path")
|
| 83 |
+
instruction = "description" # Instruction for grounding
|
| 84 |
+
width, height = image.width, image.height
|
| 85 |
+
|
| 86 |
+
resized_height, resized_width = smart_resize(
|
| 87 |
+
image.height,
|
| 88 |
+
image.width,
|
| 89 |
+
factor=processor.image_processor.patch_size * processor.image_processor.merge_size,
|
| 90 |
+
min_pixels=processor.image_processor.min_pixels,
|
| 91 |
+
max_pixels=processor.image_processor.max_pixels,
|
| 92 |
+
)
|
| 93 |
+
resized_image = image.resize((resized_width, resized_height))
|
| 94 |
+
scale_x, scale_y = width / resized_width, height / resized_height
|
| 95 |
+
|
| 96 |
+
# Prepare system and user messages
|
| 97 |
+
system_message = {
|
| 98 |
+
"role": "system",
|
| 99 |
+
"content": SYSTEM_PROMPT.format(height=resized_height,width=resized_width)
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
user_message = {
|
| 103 |
+
"role": "user",
|
| 104 |
+
"content": [
|
| 105 |
+
{"type": "image", "image": resized_image},
|
| 106 |
+
{"type": "text", "text": instruction}
|
| 107 |
+
]
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
# Tokenize and prepare inputs
|
| 111 |
+
image_inputs, video_inputs = process_vision_info([system_message, user_message])
|
| 112 |
+
text = processor.apply_chat_template([system_message, user_message], tokenize=False, add_generation_prompt=True)
|
| 113 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
| 114 |
+
inputs = inputs.to(model.device)
|
| 115 |
+
|
| 116 |
+
# Generate prediction
|
| 117 |
+
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=1.0, use_cache=True)
|
| 118 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
| 119 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
|
| 120 |
+
|
| 121 |
+
# Extract and rescale coordinates
|
| 122 |
+
pred_x, pred_y = extract_coordinates(output_text)
|
| 123 |
+
pred_x*=scale_x
|
| 124 |
+
pred_y*=scale_y
|
| 125 |
+
print(pred_x,pred_y)
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
Refer to our [code](https://github.com/Yan98/Grounding-R1) for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|