HelloKKMe commited on
Commit
6b6cc53
Β·
verified Β·
1 Parent(s): ff47bf8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -194
README.md CHANGED
@@ -3,197 +3,126 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Introduction
7
+
8
+ Reinforcement learning (RL) (e.g., GRPO) helps with grounding because of its inherent objective alignmentβ€”rewarding successful clicksβ€”rather than encouraging long textual Chain-of-Thought (CoT) reasoning. Unlike approaches that rely heavily on verbose CoT reasoning, GRPO directly incentivizes actionable and grounded responses. Based on findings from our [blog](https://huggingface.co/blog/HelloKKMe/grounding-r1), we share state-of-the-art GUI grounding models trained using GRPO.
9
+
10
+ # Performance
11
+
12
+ We follow the standard evaluation protocol and benchmark our model on three challenging datasets. Our method consistently achieves the best results among all open-source model families. Below are the comparative results:
13
+
14
+ | **Model** | **Size** | **Open Source** | **ScreenSpot-V2** | **ScreenSpotPro** | **OSWORLD-G** |
15
+ |-------------------|:--------:|:---------------:|:-----------------:|:-----------------:|:-----------------:|
16
+ | OpenAI CUA | β€” | ❌ | 87.9 | 23.4 | β€” |
17
+ | Claude 3.7 | β€” | ❌ | 87.6 | 27.7 | β€” |
18
+ | JEDI-7B | 7B | βœ… | 91.7 | 39.5 | 54.1 |
19
+ | SE-GUI | 7B | βœ… | 90.3 | 47.0 | β€” |
20
+ | UI-TARS | 7B | βœ… | 91.6 | 35.7 | 47.5 |
21
+ | UI-TARS-1.5* | 7B | βœ… | 89.7* | 42.0* | 64.2* |
22
+ | UGround-v1-7B | 7B | βœ… | β€” | 31.1 | 36.4 |
23
+ | Qwen2.5-VL-32B-Instruct | 32B | βœ… | 91.9* | 48.0 | 59.6* | |
24
+ | UGround-v1-72B | 72B | βœ… | β€” | 34.5 | β€” |
25
+ | Qwen2.5-VL-72B-Instruct | 72B | βœ… | 94.00* | 53.3 | 62.2* |
26
+ | UI-TARS | 72B | βœ… | 90.3 | 38.1 | β€” |
27
+ | Grounding-R1 (Ours) | 7B | βœ… | 92.4 <sub>*(βˆ† +2.7)*</sub> | 50.1<sub>*(βˆ† +8.1)*</sub> | 67.7 <sub>*(βˆ† +3.5)*</sub> |
28
+ | Grounding-R1 (Ours) | 32B | βœ… | 93.2 <sub>*(βˆ† +1.3)*</sub> | 53.6 <sub>*(βˆ† +5.6)*</sub> | 61.9<sub>*(βˆ† +2.3)*</sub> |
29
+ | Grounding-R1 (Ours) | 72B | βœ… | 94.8<sub>*(βˆ† +0.8)*</sub> | 58.4 <sub>*(βˆ† +5.1)*</sub> | 66.7<sub>*(βˆ† +4.5)*</sub> |
30
+
31
+
32
+ > **Note:**
33
+ > - Model size is indicated in billions (B) of parameters.
34
+ > - A dash (β€”) denotes results that are currently unavailable.
35
+ > - A superscript asterisk (οΉ‘) denotes our evaluated result.
36
+ > - UI-TARS-1.5 7B, Qwen2.5-VL-32B-Instruct, and Qwen2.5-VL-72B-Instruct are applied as our baseline models.
37
+ > - βˆ† indicates the performance improvement (βˆ†) of our model compared to its baseline.
38
+
39
+ # Inference
40
+ Below is a code snippet demonstrating how to run inference using a trained model.
41
+
42
+ ```python
43
+ from PIL import Image
44
+ from qwen_vl_utils import process_vision_info, smart_resize
45
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
46
+ import torch
47
+ import re
48
+
49
+ SYSTEM_PROMPT = '''
50
+ You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. The image resolution is height {height} and width {width}. For elements with area, return the center point.
51
+
52
+ Output the coordinate pair exactly:
53
+ (x,y)
54
+ '''
55
+ SYSTEM_PROMPT=SYSTEM_PROMPT.strip()
56
+
57
+ # Function to extract coordinates from model output
58
+ def extract_coordinates(raw_string):
59
+ try:
60
+ matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
61
+ return [tuple(map(int, match)) for match in matches][0]
62
+ except:
63
+ return 0,0
64
+
65
+ # Load model and processor
66
+ model_path = "HelloKKMe/grounding-r1-72B"
67
+ max_new_tokens = 32
68
+
69
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
70
+ model_path,
71
+ torch_dtype=torch.bfloat16,
72
+ attn_implementation="flash_attention_2",
73
+ device_map="auto"
74
+ )
75
+ processor = AutoProcessor.from_pretrained(
76
+ model_path,
77
+ min_pixels=3136,
78
+ max_pixels= 4096 * 2160
79
+ )
80
+
81
+ # Load and resize image
82
+ image = Image.open("file path")
83
+ instruction = "description" # Instruction for grounding
84
+ width, height = image.width, image.height
85
+
86
+ resized_height, resized_width = smart_resize(
87
+ image.height,
88
+ image.width,
89
+ factor=processor.image_processor.patch_size * processor.image_processor.merge_size,
90
+ min_pixels=processor.image_processor.min_pixels,
91
+ max_pixels=processor.image_processor.max_pixels,
92
+ )
93
+ resized_image = image.resize((resized_width, resized_height))
94
+ scale_x, scale_y = width / resized_width, height / resized_height
95
+
96
+ # Prepare system and user messages
97
+ system_message = {
98
+ "role": "system",
99
+ "content": SYSTEM_PROMPT.format(height=resized_height,width=resized_width)
100
+ }
101
+
102
+ user_message = {
103
+ "role": "user",
104
+ "content": [
105
+ {"type": "image", "image": resized_image},
106
+ {"type": "text", "text": instruction}
107
+ ]
108
+ }
109
+
110
+ # Tokenize and prepare inputs
111
+ image_inputs, video_inputs = process_vision_info([system_message, user_message])
112
+ text = processor.apply_chat_template([system_message, user_message], tokenize=False, add_generation_prompt=True)
113
+ inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
114
+ inputs = inputs.to(model.device)
115
+
116
+ # Generate prediction
117
+ output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=1.0, use_cache=True)
118
+ generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
119
+ output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
120
+
121
+ # Extract and rescale coordinates
122
+ pred_x, pred_y = extract_coordinates(output_text)
123
+ pred_x*=scale_x
124
+ pred_y*=scale_y
125
+ print(pred_x,pred_y)
126
+ ```
127
+
128
+ Refer to our [code](https://github.com/Yan98/Grounding-R1) for more details.