HatimF commited on
Commit
8d58190
·
verified ·
1 Parent(s): 6dfeafb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -39
README.md CHANGED
@@ -1,59 +1,109 @@
 
 
 
 
1
  ---
2
- base_model: unsloth/llama-3.2-3b-bnb-4bit
3
- library_name: transformers
4
- model_name: LoL_Build-Llama3B
5
- tags:
6
- - generated_from_trainer
7
- - unsloth
8
- - trl
9
- - sft
10
- licence: license
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
- # Model Card for LoL_Build-Llama3B
14
 
15
- This model is a fine-tuned version of [unsloth/llama-3.2-3b-bnb-4bit](https://huggingface.co/unsloth/llama-3.2-3b-bnb-4bit).
16
- It has been trained using [TRL](https://github.com/huggingface/trl).
17
 
18
- ## Quick start
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ```python
21
- from transformers import pipeline
22
 
23
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
- generator = pipeline("text-generation", model="HatimF/LoL_Build-Llama3B", device="cuda")
25
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
- print(output["generated_text"])
27
- ```
28
 
29
- ## Training procedure
 
 
 
 
30
 
31
-
32
 
 
33
 
34
- This model was trained with SFT.
 
 
 
35
 
36
- ### Framework versions
37
 
38
- - TRL: 0.15.2
39
- - Transformers: 4.51.3
40
- - Pytorch: 2.6.0
41
- - Datasets: 3.5.0
42
- - Tokenizers: 0.21.1
43
 
44
- ## Citations
 
 
 
 
 
 
 
 
 
45
 
 
46
 
 
47
 
48
- Cite TRL as:
49
-
50
  ```bibtex
51
- @misc{vonwerra2022trl,
52
- title = {{TRL: Transformer Reinforcement Learning}},
53
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
54
- year = 2020,
55
- journal = {GitHub repository},
56
- publisher = {GitHub},
57
- howpublished = {\url{https://github.com/huggingface/trl}}
58
  }
59
- ```
 
1
+ # 🧠 LoL_Build-Llama3B
2
+
3
+ A fine-tuned version of the LLaMA 3.2B model using QLoRA on a custom League of Legends build suggestion dataset. This model generates champion-specific item build recommendations based on gameplay roles and current meta.
4
+
5
  ---
6
+
7
+ ## 📚 Dataset
8
+
9
+ - **Source**: Custom JSONL dataset with `prompt` and `completion` fields.
10
+ - **Train/Val Split**: 2 files – `train.jsonl` and `val.jsonl`
11
+ - **Schema Example**:
12
+ ```json
13
+ {
14
+ "prompt": "Suggest a build for Ahri mid lane.",
15
+ "completion": "Luden's Tempest, Sorcerer's Shoes, Shadowflame..."
16
+ }
17
+ ```
18
+
19
+ ---
20
+
21
+ ## 🏋️‍♂️ Training Configuration
22
+
23
+ | Hyperparameter | Value |
24
+ |----------------------------|--------------|
25
+ | Base Model | unsloth/Llama-3.2-3B-bnb-4bit |
26
+ | Batch Size | 16 |
27
+ | Gradient Accumulation | 1 |
28
+ | Epochs | 1 |
29
+ | Max Steps | 10000 |
30
+ | Learning Rate | 2e-4 |
31
+ | Weight Decay | 0.01 |
32
+ | Max Sequence Length | 512 |
33
+ | Precision | BF16 (fallback to FP16) |
34
+ | Optimizer | AdamW (8bit) |
35
+ | LoRA Rank | 16 |
36
+ | LoRA Alpha | 32 |
37
+ | LoRA Dropout | 0.05 |
38
+
39
  ---
40
 
41
+ ### 📊 Evaluation
42
 
43
+ Trained on a single NVIDIA RTX 3060 GPU.
 
44
 
45
+ | Metric | Value |
46
+ |---------------------------|--------------------|
47
+ | **Final Eval Loss** | 0.1472 |
48
+ | **Steps Completed** | 2386 |
49
+ | **Total Epochs Trained** | 1.0 |
50
+ | **Training Batch Size** | 32 (effective) |
51
+ | **Final Learning Rate** | 1.68e-7 |
52
+ | **Final Grad Norm** | 1.64 |
53
+ | **Total FLOPs** | 6.67e+17 |
54
+ | **Eval Runtime** | 1611.14 seconds |
55
+ | **Eval Samples/sec** | 5.27 |
56
+ | **Eval Steps/sec** | 0.659 |
57
+
58
+ ---
59
+
60
+ ## ⚙️ Usage
61
 
62
  ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
 
65
+ tokenizer = AutoTokenizer.from_pretrained("HatimF/LoL_Build-Llama3B")
66
+ model = AutoModelForCausalLM.from_pretrained("HatimF/LoL_Build-Llama3B")
 
 
 
67
 
68
+ prompt = "Suggest a build for Ahri in mid lane."
69
+ inputs = tokenizer(prompt, return_tensors="pt")
70
+ outputs = model.generate(**inputs, max_new_tokens=100)
71
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
72
+ ```
73
 
74
+ ---
75
 
76
+ ## 🧠 Intended Use
77
 
78
+ - **Primary**: Champion item build recommendation for League of Legends.
79
+ - **Limitations**:
80
+ - May hallucinate outdated items or suggest invalid builds.
81
+ - Not trained on patch-specific data.
82
 
83
+ ---
84
 
85
+ ## 📦 Repository Files
 
 
 
 
86
 
87
+ | File | Description |
88
+ |---------------------------|---------------------------------|
89
+ | `adapter_model.safetensors` | LoRA adapter weights |
90
+ | `adapter_config.json` | Configuration for LoRA |
91
+ | `generation_config.json` | Decoding hyperparameters |
92
+ | `training_args.bin` | TrainingArguments instance (Unsloth) |
93
+ | `trainer_state.json` | Logged evaluation metrics |
94
+ | `tokenizer.json` | Tokenizer vocabulary |
95
+ | `special_tokens_map.json` | Special tokens |
96
+ | `tokenizer_config.json` | Tokenizer settings |
97
 
98
+ ---
99
 
100
+ ## 📄 Citation
101
 
 
 
102
  ```bibtex
103
+ @misc{hatimf2025lolbuildllama3b,
104
+ title={LoL_Build-Llama3B},
105
+ author={HatimF},
106
+ year={2025},
107
+ url={https://huggingface.co/HatimF/LoL_Build-Llama3B}
 
 
108
  }
109
+ ```