File size: 6,521 Bytes
cea7e84
38d466f
 
 
 
 
 
 
 
 
cea7e84
 
38d466f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: SegFormer_Mixed_Set2_788images_mit-b5_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_Mixed_Set2_788images_mit-b5_RGB

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Mixed_Set2_788images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0179
- Mean Iou: 0.9757
- Mean Accuracy: 0.9872
- Overall Accuracy: 0.9938
- Accuracy Background: 0.9959
- Accuracy Melt: 0.9697
- Accuracy Substrate: 0.9959
- Iou Background: 0.9922
- Iou Melt: 0.9437
- Iou Substrate: 0.9911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.1292        | 0.7042  | 50   | 0.1861          | 0.7698   | 0.8223        | 0.9387           | 0.9844              | 0.5153        | 0.9673             | 0.9318         | 0.4625   | 0.9152        |
| 0.1161        | 1.4085  | 100  | 0.1307          | 0.8463   | 0.9335        | 0.9543           | 0.9851              | 0.8721        | 0.9433             | 0.9596         | 0.6514   | 0.9279        |
| 0.072         | 2.1127  | 150  | 0.0675          | 0.9075   | 0.9607        | 0.9762           | 0.9887              | 0.9179        | 0.9755             | 0.9821         | 0.7779   | 0.9625        |
| 0.0425        | 2.8169  | 200  | 0.0622          | 0.9078   | 0.9322        | 0.9781           | 0.9868              | 0.8138        | 0.9959             | 0.9838         | 0.7746   | 0.9652        |
| 0.0214        | 3.5211  | 250  | 0.0372          | 0.9458   | 0.9688        | 0.9868           | 0.9905              | 0.9223        | 0.9935             | 0.9870         | 0.8702   | 0.9802        |
| 0.0397        | 4.2254  | 300  | 0.0373          | 0.9428   | 0.9802        | 0.9858           | 0.9948              | 0.9635        | 0.9824             | 0.9892         | 0.8617   | 0.9774        |
| 0.0515        | 4.9296  | 350  | 0.0411          | 0.9399   | 0.9735        | 0.9846           | 0.9902              | 0.9438        | 0.9864             | 0.9865         | 0.8583   | 0.9750        |
| 0.0171        | 5.6338  | 400  | 0.0267          | 0.9587   | 0.9782        | 0.9898           | 0.9937              | 0.9477        | 0.9931             | 0.9900         | 0.9017   | 0.9843        |
| 0.0274        | 6.3380  | 450  | 0.0262          | 0.9621   | 0.9780        | 0.9906           | 0.9935              | 0.9454        | 0.9951             | 0.9900         | 0.9107   | 0.9857        |
| 0.0105        | 7.0423  | 500  | 0.0272          | 0.9597   | 0.9844        | 0.9900           | 0.9924              | 0.9695        | 0.9913             | 0.9898         | 0.9041   | 0.9852        |
| 0.0143        | 7.7465  | 550  | 0.0250          | 0.9638   | 0.9824        | 0.9911           | 0.9946              | 0.9593        | 0.9931             | 0.9907         | 0.9142   | 0.9865        |
| 0.0153        | 8.4507  | 600  | 0.0226          | 0.9670   | 0.9826        | 0.9918           | 0.9947              | 0.9585        | 0.9946             | 0.9909         | 0.9223   | 0.9878        |
| 0.011         | 9.1549  | 650  | 0.0201          | 0.9711   | 0.9841        | 0.9926           | 0.9936              | 0.9622        | 0.9965             | 0.9908         | 0.9330   | 0.9893        |
| 0.009         | 9.8592  | 700  | 0.0199          | 0.9707   | 0.9858        | 0.9926           | 0.9962              | 0.9676        | 0.9936             | 0.9913         | 0.9315   | 0.9891        |
| 0.017         | 10.5634 | 750  | 0.0206          | 0.9692   | 0.9869        | 0.9923           | 0.9964              | 0.9723        | 0.9921             | 0.9911         | 0.9279   | 0.9886        |
| 0.0095        | 11.2676 | 800  | 0.0184          | 0.9733   | 0.9870        | 0.9933           | 0.9954              | 0.9704        | 0.9950             | 0.9917         | 0.9379   | 0.9902        |
| 0.0142        | 11.9718 | 850  | 0.0179          | 0.9740   | 0.9862        | 0.9935           | 0.9957              | 0.9671        | 0.9957             | 0.9919         | 0.9395   | 0.9905        |
| 0.0134        | 12.6761 | 900  | 0.0180          | 0.9739   | 0.9882        | 0.9934           | 0.9948              | 0.9747        | 0.9951             | 0.9919         | 0.9394   | 0.9903        |
| 0.0096        | 13.3803 | 950  | 0.0179          | 0.9744   | 0.9864        | 0.9936           | 0.9960              | 0.9675        | 0.9956             | 0.9922         | 0.9406   | 0.9905        |
| 0.0089        | 14.0845 | 1000 | 0.0174          | 0.9744   | 0.9881        | 0.9936           | 0.9958              | 0.9737        | 0.9949             | 0.9922         | 0.9404   | 0.9908        |
| 0.0094        | 14.7887 | 1050 | 0.0174          | 0.9754   | 0.9864        | 0.9938           | 0.9962              | 0.9671        | 0.9960             | 0.9924         | 0.9428   | 0.9911        |
| 0.0089        | 15.4930 | 1100 | 0.0192          | 0.9748   | 0.9860        | 0.9935           | 0.9945              | 0.9666        | 0.9968             | 0.9918         | 0.9421   | 0.9905        |
| 0.0087        | 16.1972 | 1150 | 0.0179          | 0.9757   | 0.9872        | 0.9938           | 0.9959              | 0.9697        | 0.9959             | 0.9922         | 0.9437   | 0.9911        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1