--- license: other base_model: nvidia/mit-b5 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: SegFormer_Clean_Set1_95images_mit-b5 results: [] --- # SegFormer_Clean_Set1_95images_mit-b5_Grayscale This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_95images dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0103 - Val Loss: 0.0229 - Mean Iou: 0.9729 - Mean Accuracy: 0.9859 - Overall Accuracy: 0.9928 - Accuracy Background: 0.9972 - Accuracy Melt: 0.9669 - Accuracy Substrate: 0.9937 - Iou Background: 0.9944 - Iou Melt: 0.9370 - Iou Substrate: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:| | 0.1375 | 5.5556 | 50 | 0.1577 | 0.7820 | 0.8338 | 0.9411 | 0.9857 | 0.5352 | 0.9806 | 0.9746 | 0.4754 | 0.8959 | | 0.0403 | 11.1111 | 100 | 0.1948 | 0.7535 | 0.7960 | 0.9378 | 0.9893 | 0.4011 | 0.9977 | 0.9826 | 0.3954 | 0.8825 | | 0.0291 | 16.6667 | 150 | 0.0484 | 0.9337 | 0.9479 | 0.9832 | 0.9969 | 0.8495 | 0.9973 | 0.9884 | 0.8414 | 0.9712 | | 0.0114 | 22.2222 | 200 | 0.0273 | 0.9634 | 0.9808 | 0.9903 | 0.9930 | 0.9544 | 0.9950 | 0.9917 | 0.9149 | 0.9838 | | 0.0138 | 27.7778 | 250 | 0.0289 | 0.9655 | 0.9782 | 0.9910 | 0.9966 | 0.9423 | 0.9956 | 0.9941 | 0.9190 | 0.9836 | | 0.0072 | 33.3333 | 300 | 0.0257 | 0.9689 | 0.9855 | 0.9918 | 0.9975 | 0.9682 | 0.9908 | 0.9945 | 0.9276 | 0.9847 | | 0.007 | 38.8889 | 350 | 0.0234 | 0.9722 | 0.9862 | 0.9926 | 0.9968 | 0.9684 | 0.9934 | 0.9944 | 0.9354 | 0.9867 | | 0.0063 | 44.4444 | 400 | 0.0232 | 0.9727 | 0.9866 | 0.9927 | 0.9971 | 0.9696 | 0.9931 | 0.9945 | 0.9366 | 0.9870 | | 0.0103 | 50.0 | 450 | 0.0229 | 0.9729 | 0.9859 | 0.9928 | 0.9972 | 0.9669 | 0.9937 | 0.9944 | 0.9370 | 0.9871 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1