File size: 4,578 Bytes
7b64df0
c567d45
 
40f5cf2
 
 
 
 
7b64df0
 
40f5cf2
 
7b64df0
40f5cf2
7b64df0
c567d45
40f5cf2
 
 
 
 
 
 
 
 
 
 
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
7b64df0
40f5cf2
 
 
 
 
 
 
 
 
7b64df0
40f5cf2
7b64df0
40f5cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b64df0
 
40f5cf2
7b64df0
40f5cf2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: microsoft/beit-base-finetuned-ade-640-640
tags:
- generated_from_trainer
model-index:
- name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set3-Grayscale_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BEiT_beit-base-finetuned-ade-640-640_Clean-Set3-Grayscale_RGB

This model is a fine-tuned version of [microsoft/beit-base-finetuned-ade-640-640](https://huggingface.co/microsoft/beit-base-finetuned-ade-640-640) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0652
- Mean Iou: 0.9446
- Mean Accuracy: 0.9687
- Overall Accuracy: 0.9855
- Accuracy Background: 0.9893
- Accuracy Melt: 0.9263
- Accuracy Substrate: 0.9905
- Iou Background: 0.9796
- Iou Melt: 0.8757
- Iou Substrate: 0.9785

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.1893        | 3.7037  | 100  | 0.1358          | 0.9180   | 0.9486        | 0.9815           | 0.9923              | 0.8651        | 0.9884             | 0.9821         | 0.7997   | 0.9723        |
| 0.0951        | 7.4074  | 200  | 0.0746          | 0.9483   | 0.9791        | 0.9876           | 0.9909              | 0.9575        | 0.9890             | 0.9860         | 0.8775   | 0.9814        |
| 0.0892        | 11.1111 | 300  | 0.0631          | 0.9489   | 0.9772        | 0.9866           | 0.9875              | 0.9536        | 0.9903             | 0.9817         | 0.8854   | 0.9796        |
| 0.0878        | 14.8148 | 400  | 0.0692          | 0.9375   | 0.9687        | 0.9829           | 0.9853              | 0.9332        | 0.9877             | 0.9742         | 0.8632   | 0.9750        |
| 0.07          | 18.5185 | 500  | 0.0631          | 0.9419   | 0.9700        | 0.9844           | 0.9865              | 0.9339        | 0.9897             | 0.9777         | 0.8714   | 0.9767        |
| 0.0507        | 22.2222 | 600  | 0.0646          | 0.9379   | 0.9659        | 0.9829           | 0.9879              | 0.9230        | 0.9869             | 0.9738         | 0.8653   | 0.9747        |
| 0.0523        | 25.9259 | 700  | 0.0569          | 0.9485   | 0.9724        | 0.9864           | 0.9903              | 0.9371        | 0.9898             | 0.9809         | 0.8855   | 0.9791        |
| 0.0402        | 29.6296 | 800  | 0.0622          | 0.9422   | 0.9686        | 0.9848           | 0.9881              | 0.9279        | 0.9897             | 0.9777         | 0.8711   | 0.9778        |
| 0.0406        | 33.3333 | 900  | 0.0631          | 0.9427   | 0.9683        | 0.9852           | 0.9894              | 0.9256        | 0.9899             | 0.9790         | 0.8707   | 0.9785        |
| 0.0389        | 37.0370 | 1000 | 0.0650          | 0.9436   | 0.9695        | 0.9852           | 0.9879              | 0.9303        | 0.9904             | 0.9784         | 0.8739   | 0.9784        |
| 0.0396        | 40.7407 | 1100 | 0.0634          | 0.9457   | 0.9700        | 0.9857           | 0.9900              | 0.9301        | 0.9899             | 0.9798         | 0.8787   | 0.9787        |
| 0.036         | 44.4444 | 1200 | 0.0653          | 0.9443   | 0.9684        | 0.9855           | 0.9894              | 0.9254        | 0.9906             | 0.9797         | 0.8748   | 0.9786        |
| 0.0224        | 48.1481 | 1300 | 0.0652          | 0.9446   | 0.9687        | 0.9855           | 0.9893              | 0.9263        | 0.9905             | 0.9796         | 0.8757   | 0.9785        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1