Harveenchadha commited on
Commit
ef90e88
·
verified ·
1 Parent(s): 4a2948f

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B-Simple-RL
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B-Simple-RL
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="Harveenchadha/Qwen-2.5-7B-Simple-RL", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/rv2008/huggingface/runs/0myp4aqp)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.2
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 13.809995387143527,
4
+ "train_runtime": 33837.9498,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.443,
7
+ "train_steps_per_second": 0.007
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": 4096,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f09a9f467093bd6535e01b400ac6610e06df25d34054acc145e4c1819fbfd4
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813fca9f788df315887615f169a8beabd9543678e197d42118cb737e68eee00c
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da78abb94ea4598495b1b75dbfb843dc56b486f5b0a5e30004ec01bfe090b6fb
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1adea7e4a50cd6a4dd4588d3765603770df9051a3a275bffbca6e48d0c661634
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 13.809995387143527,
4
+ "train_runtime": 33837.9498,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.443,
7
+ "train_steps_per_second": 0.007
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.997867803837953,
5
+ "eval_steps": 100,
6
+ "global_step": 234,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 649.4174499511719,
14
+ "epoch": 0.008528784648187633,
15
+ "grad_norm": 0.31805452704429626,
16
+ "kl": 0.0,
17
+ "learning_rate": 1.25e-07,
18
+ "loss": 0.0024,
19
+ "reward": 0.6517857387661934,
20
+ "reward_std": 0.34545752592384815,
21
+ "rewards/accuracy_reward": 0.6517857387661934,
22
+ "rewards/format_reward": 0.0,
23
+ "step": 1
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "completion_length": 590.9721260070801,
28
+ "epoch": 0.042643923240938165,
29
+ "grad_norm": 0.45416054129600525,
30
+ "kl": 0.0001373589038848877,
31
+ "learning_rate": 6.25e-07,
32
+ "loss": 0.0229,
33
+ "reward": 0.6350446697324514,
34
+ "reward_std": 0.36835399456322193,
35
+ "rewards/accuracy_reward": 0.6350446697324514,
36
+ "rewards/format_reward": 0.0,
37
+ "step": 5
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 605.218334197998,
42
+ "epoch": 0.08528784648187633,
43
+ "grad_norm": 0.3594004809856415,
44
+ "kl": 0.00028357505798339846,
45
+ "learning_rate": 1.25e-06,
46
+ "loss": 0.021,
47
+ "reward": 0.5959821727126837,
48
+ "reward_std": 0.3600444387644529,
49
+ "rewards/accuracy_reward": 0.5950893145054579,
50
+ "rewards/format_reward": 0.0008928571827709675,
51
+ "step": 10
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 595.6455612182617,
56
+ "epoch": 0.1279317697228145,
57
+ "grad_norm": 0.7764827609062195,
58
+ "kl": 0.0025279045104980467,
59
+ "learning_rate": 1.875e-06,
60
+ "loss": 0.0361,
61
+ "reward": 0.670089316368103,
62
+ "reward_std": 0.3190986420959234,
63
+ "rewards/accuracy_reward": 0.670089316368103,
64
+ "rewards/format_reward": 0.0,
65
+ "step": 15
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 627.0107414245606,
70
+ "epoch": 0.17057569296375266,
71
+ "grad_norm": 0.21981796622276306,
72
+ "kl": 0.00797119140625,
73
+ "learning_rate": 2.5e-06,
74
+ "loss": 0.0652,
75
+ "reward": 0.7066964596509934,
76
+ "reward_std": 0.28181498125195503,
77
+ "rewards/accuracy_reward": 0.7066964596509934,
78
+ "rewards/format_reward": 0.0,
79
+ "step": 20
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 603.1241317749024,
84
+ "epoch": 0.21321961620469082,
85
+ "grad_norm": 0.21138541400432587,
86
+ "kl": 0.017241477966308594,
87
+ "learning_rate": 2.99983215271541e-06,
88
+ "loss": 0.0725,
89
+ "reward": 0.7758928939700127,
90
+ "reward_std": 0.20822736751288176,
91
+ "rewards/accuracy_reward": 0.7758928939700127,
92
+ "rewards/format_reward": 0.0,
93
+ "step": 25
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 593.8991271972657,
98
+ "epoch": 0.255863539445629,
99
+ "grad_norm": 0.2828144133090973,
100
+ "kl": 0.021068000793457033,
101
+ "learning_rate": 2.993961440992859e-06,
102
+ "loss": 0.04,
103
+ "reward": 0.758482176065445,
104
+ "reward_std": 0.20791386468335987,
105
+ "rewards/accuracy_reward": 0.758482176065445,
106
+ "rewards/format_reward": 0.0,
107
+ "step": 30
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 583.6861869812012,
112
+ "epoch": 0.29850746268656714,
113
+ "grad_norm": 0.40165308117866516,
114
+ "kl": 0.004427337646484375,
115
+ "learning_rate": 2.979735890885282e-06,
116
+ "loss": 0.0572,
117
+ "reward": 0.7812500312924385,
118
+ "reward_std": 0.1955214325338602,
119
+ "rewards/accuracy_reward": 0.7812500312924385,
120
+ "rewards/format_reward": 0.0,
121
+ "step": 35
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 581.3607414245605,
126
+ "epoch": 0.3411513859275053,
127
+ "grad_norm": 2.153895378112793,
128
+ "kl": 0.004603385925292969,
129
+ "learning_rate": 2.957235057439301e-06,
130
+ "loss": 0.0418,
131
+ "reward": 0.783928607404232,
132
+ "reward_std": 0.190056839492172,
133
+ "rewards/accuracy_reward": 0.783928607404232,
134
+ "rewards/format_reward": 0.0,
135
+ "step": 40
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 587.9826141357422,
140
+ "epoch": 0.3837953091684435,
141
+ "grad_norm": 1.4613006114959717,
142
+ "kl": 0.037926101684570314,
143
+ "learning_rate": 2.9265847744427307e-06,
144
+ "loss": 0.0367,
145
+ "reward": 0.7933036029338837,
146
+ "reward_std": 0.16121128750965,
147
+ "rewards/accuracy_reward": 0.7933036029338837,
148
+ "rewards/format_reward": 0.0,
149
+ "step": 45
150
+ },
151
+ {
152
+ "clip_ratio": 0.0,
153
+ "completion_length": 580.0799369812012,
154
+ "epoch": 0.42643923240938164,
155
+ "grad_norm": 0.4102199077606201,
156
+ "kl": 0.004796600341796875,
157
+ "learning_rate": 2.887956450710995e-06,
158
+ "loss": 0.0454,
159
+ "reward": 0.7410714626312256,
160
+ "reward_std": 0.1911674102768302,
161
+ "rewards/accuracy_reward": 0.7410714626312256,
162
+ "rewards/format_reward": 0.0,
163
+ "step": 50
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 571.1562767028809,
168
+ "epoch": 0.4690831556503198,
169
+ "grad_norm": 0.2943607568740845,
170
+ "kl": 0.008086776733398438,
171
+ "learning_rate": 2.8415661114995055e-06,
172
+ "loss": 0.0303,
173
+ "reward": 0.7580357536673545,
174
+ "reward_std": 0.17367877559736372,
175
+ "rewards/accuracy_reward": 0.7580357536673545,
176
+ "rewards/format_reward": 0.0,
177
+ "step": 55
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 594.6495803833008,
182
+ "epoch": 0.511727078891258,
183
+ "grad_norm": 0.2648622989654541,
184
+ "kl": 0.006841278076171875,
185
+ "learning_rate": 2.7876731904027993e-06,
186
+ "loss": 0.033,
187
+ "reward": 0.759375037252903,
188
+ "reward_std": 0.16417703656479715,
189
+ "rewards/accuracy_reward": 0.759375037252903,
190
+ "rewards/format_reward": 0.0,
191
+ "step": 60
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 561.1022575378418,
196
+ "epoch": 0.5543710021321961,
197
+ "grad_norm": 0.17413394153118134,
198
+ "kl": 0.0077056884765625,
199
+ "learning_rate": 2.726579078496647e-06,
200
+ "loss": 0.0209,
201
+ "reward": 0.7508928917348385,
202
+ "reward_std": 0.17149335239082575,
203
+ "rewards/accuracy_reward": 0.7508928917348385,
204
+ "rewards/format_reward": 0.0,
205
+ "step": 65
206
+ },
207
+ {
208
+ "clip_ratio": 0.0,
209
+ "completion_length": 582.3223472595215,
210
+ "epoch": 0.5970149253731343,
211
+ "grad_norm": 0.19076332449913025,
212
+ "kl": 0.006637954711914062,
213
+ "learning_rate": 2.6586254388368995e-06,
214
+ "loss": 0.0295,
215
+ "reward": 0.7477678909897805,
216
+ "reward_std": 0.17248529344797134,
217
+ "rewards/accuracy_reward": 0.7477678909897805,
218
+ "rewards/format_reward": 0.0,
219
+ "step": 70
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 554.729940032959,
224
+ "epoch": 0.6396588486140725,
225
+ "grad_norm": 0.4007582366466522,
226
+ "kl": 0.013779067993164062,
227
+ "learning_rate": 2.584192295741087e-06,
228
+ "loss": 0.0353,
229
+ "reward": 0.7924107506871223,
230
+ "reward_std": 0.16211480675265194,
231
+ "rewards/accuracy_reward": 0.7924107506871223,
232
+ "rewards/format_reward": 0.0,
233
+ "step": 75
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 566.0049346923828,
238
+ "epoch": 0.6823027718550106,
239
+ "grad_norm": 0.1895846575498581,
240
+ "kl": 0.006413650512695312,
241
+ "learning_rate": 2.5036959095382875e-06,
242
+ "loss": 0.0316,
243
+ "reward": 0.7776786044239998,
244
+ "reward_std": 0.1660858705639839,
245
+ "rewards/accuracy_reward": 0.7776786044239998,
246
+ "rewards/format_reward": 0.0,
247
+ "step": 80
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 581.461636352539,
252
+ "epoch": 0.7249466950959488,
253
+ "grad_norm": 0.2569662928581238,
254
+ "kl": 0.00648956298828125,
255
+ "learning_rate": 2.4175864486725093e-06,
256
+ "loss": 0.0311,
257
+ "reward": 0.7754464603960514,
258
+ "reward_std": 0.17775620855391025,
259
+ "rewards/accuracy_reward": 0.7754464603960514,
260
+ "rewards/format_reward": 0.0,
261
+ "step": 85
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 566.7705581665039,
266
+ "epoch": 0.767590618336887,
267
+ "grad_norm": 0.5861203074455261,
268
+ "kl": 0.00692901611328125,
269
+ "learning_rate": 2.3263454721781537e-06,
270
+ "loss": 0.0299,
271
+ "reward": 0.7517857506871224,
272
+ "reward_std": 0.1826934120617807,
273
+ "rewards/accuracy_reward": 0.7517857506871224,
274
+ "rewards/format_reward": 0.0,
275
+ "step": 90
276
+ },
277
+ {
278
+ "clip_ratio": 0.0,
279
+ "completion_length": 569.6250282287598,
280
+ "epoch": 0.8102345415778252,
281
+ "grad_norm": 0.1765875220298767,
282
+ "kl": 0.006940460205078125,
283
+ "learning_rate": 2.230483236606551e-06,
284
+ "loss": 0.0238,
285
+ "reward": 0.7611607514321804,
286
+ "reward_std": 0.18477695686742662,
287
+ "rewards/accuracy_reward": 0.7611607514321804,
288
+ "rewards/format_reward": 0.0,
289
+ "step": 95
290
+ },
291
+ {
292
+ "epoch": 0.8528784648187633,
293
+ "grad_norm": 0.2575342655181885,
294
+ "learning_rate": 2.1305358424643485e-06,
295
+ "loss": 0.0241,
296
+ "step": 100
297
+ },
298
+ {
299
+ "epoch": 0.8528784648187633,
300
+ "eval_clip_ratio": 0.0,
301
+ "eval_completion_length": 546.6882248535156,
302
+ "eval_kl": 0.0092373046875,
303
+ "eval_loss": 0.010418593883514404,
304
+ "eval_reward": 0.6825428889751435,
305
+ "eval_reward_std": 0.2040955721795559,
306
+ "eval_rewards/accuracy_reward": 0.6825428889751435,
307
+ "eval_rewards/format_reward": 0.0,
308
+ "eval_runtime": 6332.2052,
309
+ "eval_samples_per_second": 0.79,
310
+ "eval_steps_per_second": 0.014,
311
+ "step": 100
312
+ },
313
+ {
314
+ "clip_ratio": 0.0,
315
+ "completion_length": 561.6328327178956,
316
+ "epoch": 0.8955223880597015,
317
+ "grad_norm": 0.27169159054756165,
318
+ "kl": 0.007660293579101562,
319
+ "learning_rate": 2.027062236122014e-06,
320
+ "loss": 0.022,
321
+ "reward": 0.775000037997961,
322
+ "reward_std": 0.18100181790068745,
323
+ "rewards/accuracy_reward": 0.775000037997961,
324
+ "rewards/format_reward": 0.0,
325
+ "step": 105
326
+ },
327
+ {
328
+ "clip_ratio": 0.0,
329
+ "completion_length": 566.2844017028808,
330
+ "epoch": 0.9381663113006397,
331
+ "grad_norm": 0.1813412606716156,
332
+ "kl": 0.00843048095703125,
333
+ "learning_rate": 1.9206410839590043e-06,
334
+ "loss": 0.0284,
335
+ "reward": 0.7910714611411095,
336
+ "reward_std": 0.191034213360399,
337
+ "rewards/accuracy_reward": 0.7910714611411095,
338
+ "rewards/format_reward": 0.0,
339
+ "step": 110
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 551.362525177002,
344
+ "epoch": 0.9808102345415778,
345
+ "grad_norm": 0.2454252392053604,
346
+ "kl": 0.010602569580078125,
347
+ "learning_rate": 1.8118675362266389e-06,
348
+ "loss": 0.0384,
349
+ "reward": 0.7803571820259094,
350
+ "reward_std": 0.18656156454235315,
351
+ "rewards/accuracy_reward": 0.7803571820259094,
352
+ "rewards/format_reward": 0.0,
353
+ "step": 115
354
+ },
355
+ {
356
+ "clip_ratio": 0.0,
357
+ "completion_length": 560.3027687072754,
358
+ "epoch": 1.0255863539445629,
359
+ "grad_norm": 0.338925838470459,
360
+ "kl": 0.012747955322265626,
361
+ "learning_rate": 1.7013498987264833e-06,
362
+ "loss": 0.0206,
363
+ "reward": 0.7812500402331353,
364
+ "reward_std": 0.17740353057160974,
365
+ "rewards/accuracy_reward": 0.7812500402331353,
366
+ "rewards/format_reward": 0.0,
367
+ "step": 120
368
+ },
369
+ {
370
+ "clip_ratio": 0.0,
371
+ "completion_length": 547.627702331543,
372
+ "epoch": 1.068230277185501,
373
+ "grad_norm": 0.7126057147979736,
374
+ "kl": 0.0207763671875,
375
+ "learning_rate": 1.5897062309175513e-06,
376
+ "loss": 0.0426,
377
+ "reward": 0.7910714641213417,
378
+ "reward_std": 0.1805942740291357,
379
+ "rewards/accuracy_reward": 0.7910714641213417,
380
+ "rewards/format_reward": 0.0,
381
+ "step": 125
382
+ },
383
+ {
384
+ "clip_ratio": 0.0,
385
+ "completion_length": 548.1620819091797,
386
+ "epoch": 1.1108742004264391,
387
+ "grad_norm": 32.12421798706055,
388
+ "kl": 0.04654083251953125,
389
+ "learning_rate": 1.4775608894771048e-06,
390
+ "loss": 0.0453,
391
+ "reward": 0.745089316368103,
392
+ "reward_std": 0.20257350029423832,
393
+ "rewards/accuracy_reward": 0.745089316368103,
394
+ "rewards/format_reward": 0.0,
395
+ "step": 130
396
+ },
397
+ {
398
+ "clip_ratio": 0.0,
399
+ "completion_length": 539.5571685791016,
400
+ "epoch": 1.1535181236673775,
401
+ "grad_norm": 9.155479431152344,
402
+ "kl": 0.06140899658203125,
403
+ "learning_rate": 1.3655410366448499e-06,
404
+ "loss": 0.0713,
405
+ "reward": 0.7616071730852128,
406
+ "reward_std": 0.2343007681891322,
407
+ "rewards/accuracy_reward": 0.7616071730852128,
408
+ "rewards/format_reward": 0.0,
409
+ "step": 135
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 588.0808280944824,
414
+ "epoch": 1.1961620469083156,
415
+ "grad_norm": 183.4071502685547,
416
+ "kl": 0.445599365234375,
417
+ "learning_rate": 1.2542731328772936e-06,
418
+ "loss": 0.1391,
419
+ "reward": 0.701339316368103,
420
+ "reward_std": 0.2731596459634602,
421
+ "rewards/accuracy_reward": 0.701339316368103,
422
+ "rewards/format_reward": 0.0,
423
+ "step": 140
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 603.2902099609375,
428
+ "epoch": 1.2388059701492538,
429
+ "grad_norm": 8.56387710571289,
430
+ "kl": 0.11466064453125,
431
+ "learning_rate": 1.1443794334267539e-06,
432
+ "loss": 0.11,
433
+ "reward": 0.6888393096625804,
434
+ "reward_std": 0.2936958262696862,
435
+ "rewards/accuracy_reward": 0.6888393096625804,
436
+ "rewards/format_reward": 0.0,
437
+ "step": 145
438
+ },
439
+ {
440
+ "clip_ratio": 0.0,
441
+ "completion_length": 601.5696647644043,
442
+ "epoch": 1.2814498933901919,
443
+ "grad_norm": 7617.19140625,
444
+ "kl": 5.51258544921875,
445
+ "learning_rate": 1.036474508437579e-06,
446
+ "loss": 0.3675,
447
+ "reward": 0.7062500342726707,
448
+ "reward_std": 0.2892017766833305,
449
+ "rewards/accuracy_reward": 0.7062500342726707,
450
+ "rewards/format_reward": 0.0,
451
+ "step": 150
452
+ },
453
+ {
454
+ "clip_ratio": 0.0,
455
+ "completion_length": 602.9071655273438,
456
+ "epoch": 1.32409381663113,
457
+ "grad_norm": 52.287174224853516,
458
+ "kl": 9337.884985351562,
459
+ "learning_rate": 9.311618060206075e-07,
460
+ "loss": 641.8632,
461
+ "reward": 0.6732143133878707,
462
+ "reward_std": 0.28922309204936025,
463
+ "rewards/accuracy_reward": 0.6732143133878707,
464
+ "rewards/format_reward": 0.0,
465
+ "step": 155
466
+ },
467
+ {
468
+ "clip_ratio": 0.0,
469
+ "completion_length": 624.1178833007813,
470
+ "epoch": 1.3667377398720681,
471
+ "grad_norm": 30.293315887451172,
472
+ "kl": 0.25384521484375,
473
+ "learning_rate": 8.290302775265509e-07,
474
+ "loss": 0.1763,
475
+ "reward": 0.6522321723401546,
476
+ "reward_std": 0.31476256959140303,
477
+ "rewards/accuracy_reward": 0.6522321723401546,
478
+ "rewards/format_reward": 0.0,
479
+ "step": 160
480
+ },
481
+ {
482
+ "clip_ratio": 0.0,
483
+ "completion_length": 604.4107437133789,
484
+ "epoch": 1.4093816631130065,
485
+ "grad_norm": 140.5424346923828,
486
+ "kl": 0.729931640625,
487
+ "learning_rate": 7.30651083891141e-07,
488
+ "loss": 0.17,
489
+ "reward": 0.6995536044239998,
490
+ "reward_std": 0.27449417784810065,
491
+ "rewards/accuracy_reward": 0.6995536044239998,
492
+ "rewards/format_reward": 0.0,
493
+ "step": 165
494
+ },
495
+ {
496
+ "clip_ratio": 0.0,
497
+ "completion_length": 616.0844047546386,
498
+ "epoch": 1.4520255863539446,
499
+ "grad_norm": 308.79248046875,
500
+ "kl": 1.08154296875,
501
+ "learning_rate": 6.3657440147149e-07,
502
+ "loss": 0.1747,
503
+ "reward": 0.666517885029316,
504
+ "reward_std": 0.2974686399102211,
505
+ "rewards/accuracy_reward": 0.666517885029316,
506
+ "rewards/format_reward": 0.0,
507
+ "step": 170
508
+ },
509
+ {
510
+ "clip_ratio": 0.0,
511
+ "completion_length": 625.4259185791016,
512
+ "epoch": 1.4946695095948828,
513
+ "grad_norm": 27.743221282958984,
514
+ "kl": 0.8737548828125,
515
+ "learning_rate": 5.473263452367318e-07,
516
+ "loss": 0.1675,
517
+ "reward": 0.6281250268220901,
518
+ "reward_std": 0.2969447080045938,
519
+ "rewards/accuracy_reward": 0.6281250268220901,
520
+ "rewards/format_reward": 0.0,
521
+ "step": 175
522
+ },
523
+ {
524
+ "clip_ratio": 0.0,
525
+ "completion_length": 594.4665451049805,
526
+ "epoch": 1.537313432835821,
527
+ "grad_norm": 42.16392517089844,
528
+ "kl": 0.6285614013671875,
529
+ "learning_rate": 4.63406026519703e-07,
530
+ "loss": 0.1549,
531
+ "reward": 0.6785714589059353,
532
+ "reward_std": 0.28817852344363926,
533
+ "rewards/accuracy_reward": 0.6785714589059353,
534
+ "rewards/format_reward": 0.0,
535
+ "step": 180
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 597.4826126098633,
540
+ "epoch": 1.579957356076759,
541
+ "grad_norm": 9.374706268310547,
542
+ "kl": 0.40172119140625,
543
+ "learning_rate": 3.852827617839085e-07,
544
+ "loss": 0.1409,
545
+ "reward": 0.672321455180645,
546
+ "reward_std": 0.28770273169502614,
547
+ "rewards/accuracy_reward": 0.672321455180645,
548
+ "rewards/format_reward": 0.0,
549
+ "step": 185
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 616.756723022461,
554
+ "epoch": 1.6226012793176974,
555
+ "grad_norm": 4.605694770812988,
556
+ "kl": 0.297802734375,
557
+ "learning_rate": 3.133934480154885e-07,
558
+ "loss": 0.1275,
559
+ "reward": 0.6464285954833031,
560
+ "reward_std": 0.32245727106928823,
561
+ "rewards/accuracy_reward": 0.6464285954833031,
562
+ "rewards/format_reward": 0.0,
563
+ "step": 190
564
+ },
565
+ {
566
+ "clip_ratio": 0.0,
567
+ "completion_length": 594.2477890014649,
568
+ "epoch": 1.6652452025586353,
569
+ "grad_norm": 41.83647155761719,
570
+ "kl": 0.3505615234375,
571
+ "learning_rate": 2.48140119418046e-07,
572
+ "loss": 0.1389,
573
+ "reward": 0.6745536029338837,
574
+ "reward_std": 0.29486791118979455,
575
+ "rewards/accuracy_reward": 0.6745536029338837,
576
+ "rewards/format_reward": 0.0,
577
+ "step": 195
578
+ },
579
+ {
580
+ "epoch": 1.7078891257995736,
581
+ "grad_norm": 6.253437519073486,
582
+ "learning_rate": 1.8988769907430552e-07,
583
+ "loss": 0.5188,
584
+ "step": 200
585
+ },
586
+ {
587
+ "epoch": 1.7078891257995736,
588
+ "eval_clip_ratio": 0.0,
589
+ "eval_completion_length": 590.7401977539063,
590
+ "eval_kl": 1.22388359375,
591
+ "eval_loss": 0.1446426957845688,
592
+ "eval_reward": 0.5810285974502564,
593
+ "eval_reward_std": 0.2900823284029961,
594
+ "eval_rewards/accuracy_reward": 0.5810285974502564,
595
+ "eval_rewards/format_reward": 0.0,
596
+ "eval_runtime": 6537.0371,
597
+ "eval_samples_per_second": 0.765,
598
+ "eval_steps_per_second": 0.014,
599
+ "step": 200
600
+ },
601
+ {
602
+ "clip_ratio": 0.0,
603
+ "completion_length": 590.7547119140625,
604
+ "epoch": 1.7505330490405118,
605
+ "grad_norm": 13380.6484375,
606
+ "kl": 5.470074462890625,
607
+ "learning_rate": 1.3896195814820269e-07,
608
+ "loss": 0.232,
609
+ "reward": 0.6745536033064127,
610
+ "reward_std": 0.28764786571264267,
611
+ "rewards/accuracy_reward": 0.6745536033064127,
612
+ "rewards/format_reward": 0.0,
613
+ "step": 205
614
+ },
615
+ {
616
+ "clip_ratio": 0.0,
617
+ "completion_length": 611.0937705993653,
618
+ "epoch": 1.79317697228145,
619
+ "grad_norm": 107.79976654052734,
620
+ "kl": 0.5142333984375,
621
+ "learning_rate": 9.564769404039419e-08,
622
+ "loss": 0.138,
623
+ "reward": 0.6406250268220901,
624
+ "reward_std": 0.30025416277348993,
625
+ "rewards/accuracy_reward": 0.6406250268220901,
626
+ "rewards/format_reward": 0.0,
627
+ "step": 210
628
+ },
629
+ {
630
+ "clip_ratio": 0.0,
631
+ "completion_length": 581.3156517028808,
632
+ "epoch": 1.835820895522388,
633
+ "grad_norm": 45.014381408691406,
634
+ "kl": 0.490106201171875,
635
+ "learning_rate": 6.018713768566658e-08,
636
+ "loss": 0.1346,
637
+ "reward": 0.6852678880095482,
638
+ "reward_std": 0.26793576404452324,
639
+ "rewards/accuracy_reward": 0.6852678880095482,
640
+ "rewards/format_reward": 0.0,
641
+ "step": 215
642
+ },
643
+ {
644
+ "clip_ratio": 0.0,
645
+ "completion_length": 590.7098457336426,
646
+ "epoch": 1.8784648187633262,
647
+ "grad_norm": 12.46617317199707,
648
+ "kl": 0.482330322265625,
649
+ "learning_rate": 3.277859889929147e-08,
650
+ "loss": 0.1325,
651
+ "reward": 0.6723214596509933,
652
+ "reward_std": 0.3076107632368803,
653
+ "rewards/accuracy_reward": 0.6723214596509933,
654
+ "rewards/format_reward": 0.0,
655
+ "step": 220
656
+ },
657
+ {
658
+ "clip_ratio": 0.0,
659
+ "completion_length": 591.4446685791015,
660
+ "epoch": 1.9211087420042645,
661
+ "grad_norm": 12.500801086425781,
662
+ "kl": 0.86319580078125,
663
+ "learning_rate": 1.357535734809795e-08,
664
+ "loss": 0.1614,
665
+ "reward": 0.6620536029338837,
666
+ "reward_std": 0.28253707848489285,
667
+ "rewards/accuracy_reward": 0.6620536029338837,
668
+ "rewards/format_reward": 0.0,
669
+ "step": 225
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 595.5790466308594,
674
+ "epoch": 1.9637526652452024,
675
+ "grad_norm": 6.495975494384766,
676
+ "kl": 0.371343994140625,
677
+ "learning_rate": 2.684805348397268e-09,
678
+ "loss": 0.1161,
679
+ "reward": 0.663839316368103,
680
+ "reward_std": 0.2793597897514701,
681
+ "rewards/accuracy_reward": 0.663839316368103,
682
+ "rewards/format_reward": 0.0,
683
+ "step": 230
684
+ },
685
+ {
686
+ "clip_ratio": 0.0,
687
+ "completion_length": 604.5189571380615,
688
+ "epoch": 1.997867803837953,
689
+ "kl": 0.5056266784667969,
690
+ "reward": 0.655133955180645,
691
+ "reward_std": 0.2893115577753633,
692
+ "rewards/accuracy_reward": 0.655133955180645,
693
+ "rewards/format_reward": 0.0,
694
+ "step": 234,
695
+ "total_flos": 0.0,
696
+ "train_loss": 13.809995387143527,
697
+ "train_runtime": 33837.9498,
698
+ "train_samples_per_second": 0.443,
699
+ "train_steps_per_second": 0.007
700
+ }
701
+ ],
702
+ "logging_steps": 5,
703
+ "max_steps": 234,
704
+ "num_input_tokens_seen": 0,
705
+ "num_train_epochs": 2,
706
+ "save_steps": 500,
707
+ "stateful_callbacks": {
708
+ "TrainerControl": {
709
+ "args": {
710
+ "should_epoch_stop": false,
711
+ "should_evaluate": false,
712
+ "should_log": false,
713
+ "should_save": false,
714
+ "should_training_stop": false
715
+ },
716
+ "attributes": {}
717
+ }
718
+ },
719
+ "total_flos": 0.0,
720
+ "train_batch_size": 8,
721
+ "trial_name": null,
722
+ "trial_params": null
723
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee5bfe08f5c78349ec7f83c2c1fdbfb0f55e2296bec3fe2d4ce9260cc0d2482e
3
+ size 7992
vocab.json ADDED
The diff for this file is too large to render. See raw diff