File size: 10,693 Bytes
70d97d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ad1ff
70d97d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ad1ff
70d97d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421004b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: apache-2.0
language:
- ko
- en
pipeline_tag: sentence-similarity
tags:
- embedding
- onnx
- korea
- korean
---
<div align="center">
  <h1><span style="color:#475b9f;">H</span> <span style="color:#ff5733;">i</span> Embed_base_v1
  <p>
  <p style="font-size: 0.6em;">: Hancom InSpace Embedding Model (Base Type)</p>
  </h1>
</div>



<img src="./images/InSpace.png" alt="Alt text" width="100%"/>


**Developer: Hancom InSpace**

**Supported languages: Korean, English**

**Model Release Date: September 7th, 2025**

---

## Information

Introducing `HiEmbed_base`, a lightweight embedding model for vector search from Hancom InSpace.
This model demonstrates outstanding performance in both Korean and English text retrieval, efficiently supporting multilingual environments. When implementing **RAG (Retrieval-Augmented Generation)** in a business setting, it offers high competitiveness in terms of supported languages, model size, speed, and accuracy, allowing for the expectation of excellent results.
Through this model release, we aim to contribute to the activation of the domestic LLM and RAG ecosystem. We hope that many people will freely test it and apply it to various services.
This model was trained with the support of GPU infrastructure from **Gyeongnam Technopark.**

## Training

**Dataset: In-house built dataset (3 million entries)**

> `HiEmbed_base` is designed to maximize multilingual performance in both Korean and English simultaneously. We constructed an optimized dataset through iterative experiments, and its main features are as follows.
> 

**Data Types**

- **KO:** QA and documents in the fields of administration, law, news, finance, and science & technology.
- **EN:** Q&A data on various topics, including web searches and community Q&A.

**Dataset Composition and Scale**

- **Structure:** Utilizes a triplet structure of query, positive, and negative.

```json
{
    "query": "question or anchor sentence",
    "pos": ["positive sample sentence 1"],
    "neg": ["negative sample sentence 1"]
}
```

- **Core Processing:** Applied Hard Negative Sampling to enhance the model's discriminative ability.
- **Final Scale:** Training was conducted with a total of 3 million data entries constructed through the above process.
- **Data Split:**
    - **Training/Validation Ratio:** 92% / 8%
    - **Training Data Language Ratio (KO:EN):** 7:3 (Focused on strengthening Korean performance)
    - **Validation Data Language Ratio (KO:EN):** 1:1 (For a balanced performance evaluation of both languages)

We have put a great deal of effort into the quality of the dataset and the balance of the training data to improve not only Korean but also multilingual support and performance, including English. After testing various ratios, we found that maintaining a 7:3 ratio during training yielded the best results.

## Usage

### **Install**

First, install the necessary libraries. For GPU support, ensure you have a compatible CUDA environment.

```python
# Common libraries
pip install -U transformers onnx

# For using Optimum
# For GPU (CUDA)
pip install optimum[onnxruntime-gpu]
# For CPU only
pip install optimum[onnxruntime]
```

**Note:** Ensure that the installed version of `onnxruntime-gpu` is compatible with your system's CUDA version. If you encounter errors, you may need to manually install a specific version of `onnxruntime-gpu` that matches your CUDA environment.

**Running the model on a GPU**

Set the provider to `CUDAExecutionProvider` and specify the GPU index for the `device`.

```python
from optimum.pipelines import pipeline
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForFeatureExtraction

model_path = "/onnx/.."
sentences = [
	"๊ฒฝ์ƒ๋‚จ๋„๋Š” ์‚ฐ๋ถˆ ํ”ผํ•ด๋ฅผ ์ž…์€ 4๊ฐœ ์‹œยท๊ตฐ์— ๋Œ€ํ•ด ๊ธด๊ธ‰ ๋ณต๊ตฌ๋น„ 83์–ต์›์„ ์ง€์›ํ•˜๊ณ , ์ฃผ๋ฏผ ์„ค๋ช…ํšŒ๋ฅผ ํ†ตํ•ด ์ฃผํƒ ๋ณต๊ตฌ ์ผ์ •๊ณผ ์ ˆ์ฐจ๋ฅผ ์•ˆ๋‚ดํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค.",
	"ํ•œ์ปด์ธ์ŠคํŽ˜์ด์Šค(๋Œ€ํ‘œ ์ตœ๋ช…์ง„)๋Š” ๊ธฐ์ˆ ์„ฑ ํ‰๊ฐ€๋ฅผ ํ†ต๊ณผํ•˜๊ณ  ํ”„๋ฆฌ IPO๋กœ 125์–ต ์›์„ ์œ ์น˜ํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฐ๋‚ด ์ฝ”์Šค๋‹ฅ ์ƒ์žฅ ์ ˆ์ฐจ๋ฅผ ๋ณธ๊ฒฉํ™”ํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค."
]

# 1. Load model with CUDAExecutionProvider
ort_model = ORTModelForFeatureExtraction.from_pretrained(
    model_path,
    provider="CUDAExecutionProvider",
    local_files_only=True
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# 2. Create pipeline on a specific GPU
pipe = pipeline(
    task="feature-extraction",
    model=ort_model,
    tokenizer=tokenizer,
    device="cuda:0"  # Target the first GPU
)

# 3. Get embeddings
embeddings = pipe(sentences)
print("Embeddings generated on GPU.")

```

**Running the model on multiple GPUs**

The optimum pipeline for ONNX Runtime does not automatically parallelize a single request across multiple GPUs. The common approach for multi-GPU usage is to run separate inference processes on different GPUs to handle batches in parallel.

You can achieve this by creating multiple pipelines, each assigned to a different GPU device.

```python
from optimum.pipelines import pipeline
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForFeatureExtraction

model_path = "/onnx/.."

# Load the model once
ort_model = ORTModelForFeatureExtraction.from_pretrained(
    model_path,
    provider="CUDAExecutionProvider",
    local_files_only=True
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Create a pipeline for each GPU
pipe_gpu0 = pipeline(task="feature-extraction", model=ort_model, tokenizer=tokenizer, device="cuda:0")
pipe_gpu1 = pipeline(task="feature-extraction", model=ort_model, tokenizer=tokenizer, device="cuda:1")

# Process different data on each pipeline (e.g., in separate threads/processes)
sentences_batch1 = ["๊ฒฝ์ƒ๋‚จ๋„๋Š” ์‚ฐ๋ถˆ ํ”ผํ•ด๋ฅผ ์ž…์€ 4๊ฐœ ์‹œยท๊ตฐ์— ๋Œ€ํ•ด ๊ธด๊ธ‰ ๋ณต๊ตฌ๋น„ 83์–ต์›์„ ์ง€์›ํ•˜๊ณ , ์ฃผ๋ฏผ ์„ค๋ช…ํšŒ๋ฅผ ํ†ตํ•ด ์ฃผํƒ ๋ณต๊ตฌ ์ผ์ •๊ณผ ์ ˆ์ฐจ๋ฅผ ์•ˆ๋‚ดํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค."]
sentences_batch2 = ["ํ•œ์ปด์ธ์ŠคํŽ˜์ด์Šค(๋Œ€ํ‘œ ์ตœ๋ช…์ง„)๋Š” ๊ธฐ์ˆ ์„ฑ ํ‰๊ฐ€๋ฅผ ํ†ต๊ณผํ•˜๊ณ  ํ”„๋ฆฌ IPO๋กœ 125์–ต ์›์„ ์œ ์น˜ํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฐ๋‚ด ์ฝ”์Šค๋‹ฅ ์ƒ์žฅ ์ ˆ์ฐจ๋ฅผ ๋ณธ๊ฒฉํ™”ํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค."]

embeddings1 = pipe_gpu0(sentences_batch1)
embeddings2 = pipe_gpu1(sentences_batch2)

print("Batch 1 processed on cuda:0.")
print("Batch 2 processed on cuda:1.")
```

## Benchmark

### Korean Leaderboard

| Model | Korean | KLUE-STS | KLUE-TC | Ko-StrategyQA | KorSTS | AutoRAGRetrieval | XPQARetrieval |
| --- | --- | --- | --- | --- | --- | --- | --- |
| bge-m3 | 69.2 | 87.71 | 55.5 | 79.4 | 80.26 | 83.01 | 29.33 |
| BGE-m3-ko | 70.72 | 88.65 | 55.35 | 79.59 | 81.59 | 87.38 | 31.8 |
| **HancomInSapce_HiEmbed_base** | **71.53** | **87.98** | **61.79** | **79.92** | **81.75** | **85.62** | **32.13** |
| ibm-granite_granite-embedding-107m-multilingual | 57.95 | 73.25 | 48.23 | 70.53 | 70.6 | 68.24 | 16.83 |
| intfloat_multilingual-e5-base | 64.41 | 77.71 | 59.74 | 75.45 | 75.2 | 77.66 | 20.7 |
| intfloat_multilingual-e5-large | 68.14 | 81.58 | 62.09 | 79.82 | 79.24 | 80.66 | 25.45 |
| intfloat_multilingual-e5-large-instruct | 67.11 | 86.98 | 63.61 | 75.68 | 79.64 | 68.08 | 28.64 |
| KURE-v1 | 71.44 | 87.74 | 61.32 | 79.99 | 81.25 | 87.08 | 31.25 |
| sentence-transformers_all-MiniLM-L6-v2 | 15.67 | 22.36 | 19.84 | 1.41 | 42.3 | 6.22 | 1.9 |
| Snowflake_snowflake-arctic-embed-l-v2.0 | 68.69 | 82.55 | 58.98 | 80.46 | 73.81 | 83.86 | 32.47 |
| Snowflake_snowflake-arctic-embed-m | 20.96 | 38.52 | 19.57 | 4.57 | 39.1 | 19.19 | 4.8 |
| Snowflake_snowflake-arctic-embed-s | 17.64 | 26.17 | 20.5 | 4.89 | 33.36 | 16.91 | 4 |

### English Leaderboard

| Model | English | Retrieval | STS | Classification | Clustering | PairClassification | Reranking |
| --- | --- | --- | --- | --- | --- | --- | --- |
| bge-m3 | 28.5 | 54.42 | 80.44 | 63.68 | 42.04 | 84.48 | 55.27 |
| BGE-m3-ko | 28.66 | 55.83 | 81.18 | 63.64 | 43.49 | 83.95 | 55.2 |
| **HancomInSapce_HiEmbed_base** | **29.07** | **56.22** | **81.37** | **64.45** | **44.83** | **84.8** | **56.21** |
| ibm-granite_granite-embedding-107m-multilingual | 26.3 | 44.77 | 72.55 | 54.26 | 41.82 | 80.29 | 55.59 |
| intfloat_multilingual-e5-base | 27.75 | 48.8 | 75.98 | 61.34 | 44.22 | 83.74 | 54.16 |
| intfloat_multilingual-e5-large | 28.28 | 52.29 | 78.97 | 61.66 | 45.52 | 84.32 | 54.67 |
| intfloat_multilingual-e5-large-instruct | 29.05 | 50.29 | 81 | 62.67 | 49.9 | 82.12 | 55.32 |
| KURE-v1 | 28.77 | 55.8 | 80.74 | 64.16 | 44.12 | 84.56 | 55.71 |
| sentence-transformers_all-MiniLM-L6-v2 | 27.11 | 17.54 | 51.56 | 51.86 | 46.22 | 82.37 | 58.04 |
| Snowflake_snowflake-arctic-embed-l-v2.0 | 28.75 | 57.6 | 75.68 | 60.06 | 47.58 | 83 | 57 |
| Snowflake_snowflake-arctic-embed-m | 26.58 | 22.95 | 51.23 | 49.39 | 47.65 | 75.83 | 57.88 |
| Snowflake_snowflake-arctic-embed-s | 26.87 | 21.5 | 48.07 | 52.19 | 46.79 | 80.11 | 55.93 |

### Overall Leaderboard

| Model | Overall | Korean | English | Retrieval | STS | Classification | Clustering | PairClassification | Reranking |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| bge-m3 | 63.39 | 69.2 | 28.5 | 54.42 | 80.44 | 63.68 | 42.04 | 84.48 | 55.27 |
| BGE-m3-ko | 63.88 | 70.72 | 28.66 | 55.83 | 81.18 | 63.64 | 43.49 | 83.95 | 55.2 |
| **HancomInSapce_HiEmbed_base** | **64.65** | **71.53** | **29.07** | **56.22** | **81.37** | **64.45** | **44.83** | **84.8** | **56.21** |
| ibm-granite_granite-embedding-107m-multilingual | 58.21 | 57.95 | 26.3 | 44.77 | 72.55 | 54.26 | 41.82 | 80.29 | 55.59 |
| intfloat_multilingual-e5-base | 61.37 | 64.41 | 27.75 | 48.8 | 75.98 | 61.34 | 44.22 | 83.74 | 54.16 |
| intfloat_multilingual-e5-large | 62.91 | 68.14 | 28.28 | 52.29 | 78.97 | 61.66 | 45.52 | 84.32 | 54.67 |
| intfloat_multilingual-e5-large-instruct | 63.55 | 67.11 | 29.05 | 50.29 | 81 | 62.67 | 49.9 | 82.12 | 55.32 |
| KURE-v1 | 64.18 | 71.44 | 28.77 | 55.8 | 80.74 | 64.16 | 44.12 | 84.56 | 55.71 |
| sentence-transformers_all-MiniLM-L6-v2 | 51.27 | 15.67 | 27.11 | 17.54 | 51.56 | 51.86 | 46.22 | 82.37 | 58.04 |
| Snowflake_snowflake-arctic-embed-l-v2.0 | 63.49 | 68.69 | 28.75 | 57.6 | 75.68 | 60.06 | 47.58 | 83 | 57 |
| Snowflake_snowflake-arctic-embed-m | 50.82 | 20.96 | 26.58 | 22.95 | 51.23 | 49.39 | 47.65 | 75.83 | 57.88 |
| Snowflake_snowflake-arctic-embed-s | 50.76 | 17.64 | 26.87 | 21.5 | 48.07 | 52.19 | 46.79 | 80.11 | 55.93 |

## About us
<img src="./images/sejong1.webp" alt="Alt text" width="100%"/>

[Contact us](https://www.inspace.co.kr/)

## Caption

```json
@misc{
      title={HiEmbed_base_v1: Hancom InSpace Embedding Model (Base Type)},
      author={JoChanho, KimHajeong},
      year={2025}
}
```