Haitao999 commited on
Commit
48d3732
·
verified ·
1 Parent(s): cbcf9dc

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen2.5-7B-GRPO-NM-COT-20K
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-7B-GRPO-NM-COT-20K
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="Haitao999/Qwen2.5-7B-GRPO-NM-COT-20K", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tjucsailab/huggingface/runs/3o5ac7y3)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.14.0
38
+ - Transformers: 4.48.3
39
+ - Pytorch: 2.5.1+cu124
40
+ - Datasets: 3.1.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0,
4
+ "train_runtime": 2.2646,
5
+ "train_samples": 20000,
6
+ "train_samples_per_second": 8831.586,
7
+ "train_steps_per_second": 39.301
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.48.3"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6020aab99cf3b40c5a2de4cf380219d5ef4a049082d47a2940bafe6ca1fe4fa4
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd8872a69f113cf288b737b05d2a340a0e74a2d05cfcff4078a8506eb53ca9da
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8481f0ccf59821ce9675b9c4dc62dee5041cf594d877bb30f108da7eb9f063ae
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d25a83bba9483f9c7cb78a9236ebd7c846ace309c8c0d97720060a1ec78bbfe9
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
runs/Apr01_11-12-53_SH-IDC1-10-140-1-45/events.out.tfevents.1743477401.SH-IDC1-10-140-1-45 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6d188d3c003b7d2b2939440550f24971ca5a6cf5973306972e6d4e997fb609
3
+ size 6373
runs/Mar31_18-48-54_SH-IDC1-10-140-1-45/events.out.tfevents.1743418240.SH-IDC1-10-140-1-45 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2678e05749190b899db492ffabbe07b96e78839a0cdf6e43ee21930138ce89
3
+ size 45445
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0,
4
+ "train_runtime": 2.2646,
5
+ "train_samples": 20000,
6
+ "train_samples_per_second": 8831.586,
7
+ "train_steps_per_second": 39.301
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9965010496850945,
5
+ "eval_steps": 100,
6
+ "global_step": 89,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 869.9017639160156,
13
+ "epoch": 0.01119664100769769,
14
+ "grad_norm": 0.1226201057434082,
15
+ "learning_rate": 3e-06,
16
+ "loss": 0.0,
17
+ "reward": 0.3118622424080968,
18
+ "reward_std": 0.21511575765907764,
19
+ "rewards/accuracy_reward": 0.3118622424080968,
20
+ "step": 1
21
+ },
22
+ {
23
+ "completion_length": 898.8724212646484,
24
+ "epoch": 0.02239328201539538,
25
+ "grad_norm": 0.06424866616725922,
26
+ "learning_rate": 3e-06,
27
+ "loss": 0.0,
28
+ "reward": 0.27614795323461294,
29
+ "reward_std": 0.20953080570325255,
30
+ "rewards/accuracy_reward": 0.27614795323461294,
31
+ "step": 2
32
+ },
33
+ {
34
+ "completion_length": 908.4138870239258,
35
+ "epoch": 0.03358992302309307,
36
+ "grad_norm": 0.16260072588920593,
37
+ "learning_rate": 3e-06,
38
+ "loss": 0.0,
39
+ "reward": 0.33673468697816133,
40
+ "reward_std": 0.19594408059492707,
41
+ "rewards/accuracy_reward": 0.33673468697816133,
42
+ "step": 3
43
+ },
44
+ {
45
+ "completion_length": 861.184928894043,
46
+ "epoch": 0.04478656403079076,
47
+ "grad_norm": 0.1080532968044281,
48
+ "learning_rate": 3e-06,
49
+ "loss": 0.0,
50
+ "reward": 0.32525509409606457,
51
+ "reward_std": 0.19159379415214062,
52
+ "rewards/accuracy_reward": 0.32525509409606457,
53
+ "step": 4
54
+ },
55
+ {
56
+ "completion_length": 837.5133781433105,
57
+ "epoch": 0.05598320503848846,
58
+ "grad_norm": 0.05878443643450737,
59
+ "learning_rate": 3e-06,
60
+ "loss": 0.0,
61
+ "reward": 0.3373724417760968,
62
+ "reward_std": 0.1757088042795658,
63
+ "rewards/accuracy_reward": 0.3373724417760968,
64
+ "step": 5
65
+ },
66
+ {
67
+ "completion_length": 870.5720481872559,
68
+ "epoch": 0.06717984604618614,
69
+ "grad_norm": 0.045949794352054596,
70
+ "learning_rate": 3e-06,
71
+ "loss": 0.0,
72
+ "reward": 0.30293366871774197,
73
+ "reward_std": 0.2117346664890647,
74
+ "rewards/accuracy_reward": 0.30293366871774197,
75
+ "step": 6
76
+ },
77
+ {
78
+ "completion_length": 846.4999847412109,
79
+ "epoch": 0.07837648705388384,
80
+ "grad_norm": 0.07094219326972961,
81
+ "learning_rate": 3e-06,
82
+ "loss": 0.0,
83
+ "reward": 0.34948979038745165,
84
+ "reward_std": 0.20344350347295403,
85
+ "rewards/accuracy_reward": 0.34948979038745165,
86
+ "step": 7
87
+ },
88
+ {
89
+ "completion_length": 865.3762550354004,
90
+ "epoch": 0.08957312806158152,
91
+ "grad_norm": 0.03545041009783745,
92
+ "learning_rate": 3e-06,
93
+ "loss": 0.0,
94
+ "reward": 0.295918358489871,
95
+ "reward_std": 0.16994785657152534,
96
+ "rewards/accuracy_reward": 0.295918358489871,
97
+ "step": 8
98
+ },
99
+ {
100
+ "completion_length": 852.7289352416992,
101
+ "epoch": 0.10076976906927922,
102
+ "grad_norm": 0.045342933386564255,
103
+ "learning_rate": 3e-06,
104
+ "loss": 0.0,
105
+ "reward": 0.34438775200396776,
106
+ "reward_std": 0.1971532292664051,
107
+ "rewards/accuracy_reward": 0.34438775200396776,
108
+ "step": 9
109
+ },
110
+ {
111
+ "completion_length": 843.637092590332,
112
+ "epoch": 0.11196641007697691,
113
+ "grad_norm": 0.026218140497803688,
114
+ "learning_rate": 3e-06,
115
+ "loss": 0.0,
116
+ "reward": 0.3373724464327097,
117
+ "reward_std": 0.19200961757451296,
118
+ "rewards/accuracy_reward": 0.3373724464327097,
119
+ "step": 10
120
+ },
121
+ {
122
+ "completion_length": 887.6957740783691,
123
+ "epoch": 0.1231630510846746,
124
+ "grad_norm": 0.04722030088305473,
125
+ "learning_rate": 3e-06,
126
+ "loss": 0.0,
127
+ "reward": 0.3252550936304033,
128
+ "reward_std": 0.1759854848496616,
129
+ "rewards/accuracy_reward": 0.3252550936304033,
130
+ "step": 11
131
+ },
132
+ {
133
+ "completion_length": 812.6587829589844,
134
+ "epoch": 0.13435969209237228,
135
+ "grad_norm": 0.03267057612538338,
136
+ "learning_rate": 3e-06,
137
+ "loss": 0.0,
138
+ "reward": 0.37244897335767746,
139
+ "reward_std": 0.19372099824249744,
140
+ "rewards/accuracy_reward": 0.37244897335767746,
141
+ "step": 12
142
+ },
143
+ {
144
+ "completion_length": 833.1377372741699,
145
+ "epoch": 0.14555633310007,
146
+ "grad_norm": 0.028331954032182693,
147
+ "learning_rate": 3e-06,
148
+ "loss": 0.0,
149
+ "reward": 0.3769132560119033,
150
+ "reward_std": 0.18134982651099563,
151
+ "rewards/accuracy_reward": 0.3769132560119033,
152
+ "step": 13
153
+ },
154
+ {
155
+ "completion_length": 818.9668273925781,
156
+ "epoch": 0.15675297410776767,
157
+ "grad_norm": 0.04085038602352142,
158
+ "learning_rate": 3e-06,
159
+ "loss": 0.0,
160
+ "reward": 0.3348214216530323,
161
+ "reward_std": 0.1621781517751515,
162
+ "rewards/accuracy_reward": 0.3348214216530323,
163
+ "step": 14
164
+ },
165
+ {
166
+ "completion_length": 840.0886306762695,
167
+ "epoch": 0.16794961511546536,
168
+ "grad_norm": 0.028016554191708565,
169
+ "learning_rate": 3e-06,
170
+ "loss": 0.0,
171
+ "reward": 0.33673468697816133,
172
+ "reward_std": 0.13258170057088137,
173
+ "rewards/accuracy_reward": 0.33673468697816133,
174
+ "step": 15
175
+ },
176
+ {
177
+ "completion_length": 826.784423828125,
178
+ "epoch": 0.17914625612316304,
179
+ "grad_norm": 0.015145727433264256,
180
+ "learning_rate": 3e-06,
181
+ "loss": 0.0,
182
+ "reward": 0.3596938708797097,
183
+ "reward_std": 0.18337781634181738,
184
+ "rewards/accuracy_reward": 0.3596938708797097,
185
+ "step": 16
186
+ },
187
+ {
188
+ "completion_length": 803.470645904541,
189
+ "epoch": 0.19034289713086075,
190
+ "grad_norm": 0.026870042085647583,
191
+ "learning_rate": 3e-06,
192
+ "loss": 0.0,
193
+ "reward": 0.34502550307661295,
194
+ "reward_std": 0.14298884477466345,
195
+ "rewards/accuracy_reward": 0.34502550307661295,
196
+ "step": 17
197
+ },
198
+ {
199
+ "completion_length": 805.1179656982422,
200
+ "epoch": 0.20153953813855843,
201
+ "grad_norm": 0.01876048557460308,
202
+ "learning_rate": 3e-06,
203
+ "loss": 0.0,
204
+ "reward": 0.39732141699641943,
205
+ "reward_std": 0.182099889498204,
206
+ "rewards/accuracy_reward": 0.39732141699641943,
207
+ "step": 18
208
+ },
209
+ {
210
+ "completion_length": 805.6084022521973,
211
+ "epoch": 0.21273617914625612,
212
+ "grad_norm": 0.028706129640340805,
213
+ "learning_rate": 3e-06,
214
+ "loss": 0.0,
215
+ "reward": 0.40114795230329037,
216
+ "reward_std": 0.1437693452462554,
217
+ "rewards/accuracy_reward": 0.40114795230329037,
218
+ "step": 19
219
+ },
220
+ {
221
+ "completion_length": 813.2353134155273,
222
+ "epoch": 0.22393282015395383,
223
+ "grad_norm": 0.01931103877723217,
224
+ "learning_rate": 3e-06,
225
+ "loss": 0.0,
226
+ "reward": 0.4183673420920968,
227
+ "reward_std": 0.172919531352818,
228
+ "rewards/accuracy_reward": 0.4183673420920968,
229
+ "step": 20
230
+ },
231
+ {
232
+ "completion_length": 822.071403503418,
233
+ "epoch": 0.2351294611616515,
234
+ "grad_norm": 0.013188039883971214,
235
+ "learning_rate": 3e-06,
236
+ "loss": 0.0,
237
+ "reward": 0.38839284982532263,
238
+ "reward_std": 0.1737575875595212,
239
+ "rewards/accuracy_reward": 0.38839284982532263,
240
+ "step": 21
241
+ },
242
+ {
243
+ "completion_length": 801.5975608825684,
244
+ "epoch": 0.2463261021693492,
245
+ "grad_norm": 0.01899808831512928,
246
+ "learning_rate": 3e-06,
247
+ "loss": 0.0,
248
+ "reward": 0.42028060369193554,
249
+ "reward_std": 0.1760622572619468,
250
+ "rewards/accuracy_reward": 0.42028060369193554,
251
+ "step": 22
252
+ },
253
+ {
254
+ "completion_length": 766.1243476867676,
255
+ "epoch": 0.2575227431770469,
256
+ "grad_norm": 0.015976959839463234,
257
+ "learning_rate": 3e-06,
258
+ "loss": 0.0,
259
+ "reward": 0.42155611142516136,
260
+ "reward_std": 0.1581620997749269,
261
+ "rewards/accuracy_reward": 0.42155611142516136,
262
+ "step": 23
263
+ },
264
+ {
265
+ "completion_length": 797.7608299255371,
266
+ "epoch": 0.26871938418474456,
267
+ "grad_norm": 0.016489814966917038,
268
+ "learning_rate": 3e-06,
269
+ "loss": 0.0,
270
+ "reward": 0.3514030557125807,
271
+ "reward_std": 0.14521192712709308,
272
+ "rewards/accuracy_reward": 0.3514030557125807,
273
+ "step": 24
274
+ },
275
+ {
276
+ "completion_length": 812.9444999694824,
277
+ "epoch": 0.27991602519244224,
278
+ "grad_norm": 0.016817867755889893,
279
+ "learning_rate": 3e-06,
280
+ "loss": 0.0,
281
+ "reward": 0.3150510140694678,
282
+ "reward_std": 0.12147563928738236,
283
+ "rewards/accuracy_reward": 0.3150510140694678,
284
+ "step": 25
285
+ },
286
+ {
287
+ "completion_length": 764.3099327087402,
288
+ "epoch": 0.29111266620014,
289
+ "grad_norm": 0.03271699696779251,
290
+ "learning_rate": 3e-06,
291
+ "loss": 0.0,
292
+ "reward": 0.39668366592377424,
293
+ "reward_std": 0.1408104975707829,
294
+ "rewards/accuracy_reward": 0.39668366592377424,
295
+ "step": 26
296
+ },
297
+ {
298
+ "completion_length": 781.2104415893555,
299
+ "epoch": 0.30230930720783766,
300
+ "grad_norm": 0.039215218275785446,
301
+ "learning_rate": 3e-06,
302
+ "loss": 0.0,
303
+ "reward": 0.3903061170130968,
304
+ "reward_std": 0.1559837511740625,
305
+ "rewards/accuracy_reward": 0.3903061170130968,
306
+ "step": 27
307
+ },
308
+ {
309
+ "completion_length": 769.5580215454102,
310
+ "epoch": 0.31350594821553535,
311
+ "grad_norm": 0.036487579345703125,
312
+ "learning_rate": 3e-06,
313
+ "loss": 0.0,
314
+ "reward": 0.3373724427074194,
315
+ "reward_std": 0.12534773931838572,
316
+ "rewards/accuracy_reward": 0.3373724427074194,
317
+ "step": 28
318
+ },
319
+ {
320
+ "completion_length": 733.8928413391113,
321
+ "epoch": 0.32470258922323303,
322
+ "grad_norm": 0.05340224504470825,
323
+ "learning_rate": 3e-06,
324
+ "loss": 0.0,
325
+ "reward": 0.45408162474632263,
326
+ "reward_std": 0.15175338089466095,
327
+ "rewards/accuracy_reward": 0.45408162474632263,
328
+ "step": 29
329
+ },
330
+ {
331
+ "completion_length": 784.5631217956543,
332
+ "epoch": 0.3358992302309307,
333
+ "grad_norm": 0.018003573641180992,
334
+ "learning_rate": 3e-06,
335
+ "loss": 0.0,
336
+ "reward": 0.3507652999833226,
337
+ "reward_std": 0.15918243979103863,
338
+ "rewards/accuracy_reward": 0.3507652999833226,
339
+ "step": 30
340
+ },
341
+ {
342
+ "completion_length": 784.8794441223145,
343
+ "epoch": 0.3470958712386284,
344
+ "grad_norm": 0.0389319472014904,
345
+ "learning_rate": 3e-06,
346
+ "loss": 0.0,
347
+ "reward": 0.3896683603525162,
348
+ "reward_std": 0.14439309062436223,
349
+ "rewards/accuracy_reward": 0.3896683603525162,
350
+ "step": 31
351
+ },
352
+ {
353
+ "completion_length": 768.0031700134277,
354
+ "epoch": 0.3582925122463261,
355
+ "grad_norm": 0.06784125417470932,
356
+ "learning_rate": 3e-06,
357
+ "loss": 0.0,
358
+ "reward": 0.3903061170130968,
359
+ "reward_std": 0.13286479515954852,
360
+ "rewards/accuracy_reward": 0.3903061170130968,
361
+ "step": 32
362
+ },
363
+ {
364
+ "completion_length": 767.3890075683594,
365
+ "epoch": 0.3694891532540238,
366
+ "grad_norm": 0.05318552255630493,
367
+ "learning_rate": 3e-06,
368
+ "loss": 0.0,
369
+ "reward": 0.4355867328122258,
370
+ "reward_std": 0.13299752678722143,
371
+ "rewards/accuracy_reward": 0.4355867328122258,
372
+ "step": 33
373
+ },
374
+ {
375
+ "completion_length": 762.5069999694824,
376
+ "epoch": 0.3806857942617215,
377
+ "grad_norm": 0.06330139189958572,
378
+ "learning_rate": 3e-06,
379
+ "loss": 0.0,
380
+ "reward": 0.3941326458007097,
381
+ "reward_std": 0.1394878369756043,
382
+ "rewards/accuracy_reward": 0.3941326458007097,
383
+ "step": 34
384
+ },
385
+ {
386
+ "completion_length": 812.4967880249023,
387
+ "epoch": 0.3918824352694192,
388
+ "grad_norm": 0.10220023989677429,
389
+ "learning_rate": 3e-06,
390
+ "loss": 0.0,
391
+ "reward": 0.35395407397300005,
392
+ "reward_std": 0.14999566785991192,
393
+ "rewards/accuracy_reward": 0.35395407397300005,
394
+ "step": 35
395
+ },
396
+ {
397
+ "completion_length": 776.1479415893555,
398
+ "epoch": 0.40307907627711687,
399
+ "grad_norm": 0.11629489064216614,
400
+ "learning_rate": 3e-06,
401
+ "loss": 0.0,
402
+ "reward": 0.4107142761349678,
403
+ "reward_std": 0.1379204117693007,
404
+ "rewards/accuracy_reward": 0.4107142761349678,
405
+ "step": 36
406
+ },
407
+ {
408
+ "completion_length": 740.758918762207,
409
+ "epoch": 0.41427571728481455,
410
+ "grad_norm": 0.17305724322795868,
411
+ "learning_rate": 3e-06,
412
+ "loss": 0.0,
413
+ "reward": 0.4400510098785162,
414
+ "reward_std": 0.10666065919212997,
415
+ "rewards/accuracy_reward": 0.4400510098785162,
416
+ "step": 37
417
+ },
418
+ {
419
+ "completion_length": 779.7040634155273,
420
+ "epoch": 0.42547235829251223,
421
+ "grad_norm": 0.2567689120769501,
422
+ "learning_rate": 3e-06,
423
+ "loss": 0.0,
424
+ "reward": 0.39732142351567745,
425
+ "reward_std": 0.13629061914980412,
426
+ "rewards/accuracy_reward": 0.39732142351567745,
427
+ "step": 38
428
+ },
429
+ {
430
+ "completion_length": 757.4642677307129,
431
+ "epoch": 0.4366689993002099,
432
+ "grad_norm": 0.11120310425758362,
433
+ "learning_rate": 3e-06,
434
+ "loss": 0.0,
435
+ "reward": 0.38903060741722584,
436
+ "reward_std": 0.1286280113272369,
437
+ "rewards/accuracy_reward": 0.38903060741722584,
438
+ "step": 39
439
+ },
440
+ {
441
+ "completion_length": 741.5631141662598,
442
+ "epoch": 0.44786564030790765,
443
+ "grad_norm": 0.32911476492881775,
444
+ "learning_rate": 3e-06,
445
+ "loss": 0.0,
446
+ "reward": 0.42155611142516136,
447
+ "reward_std": 0.13757976656779647,
448
+ "rewards/accuracy_reward": 0.42155611142516136,
449
+ "step": 40
450
+ },
451
+ {
452
+ "completion_length": 751.7557182312012,
453
+ "epoch": 0.45906228131560534,
454
+ "grad_norm": 0.35593709349632263,
455
+ "learning_rate": 3e-06,
456
+ "loss": 0.0,
457
+ "reward": 0.45535713247954845,
458
+ "reward_std": 0.14861705573275685,
459
+ "rewards/accuracy_reward": 0.45535713247954845,
460
+ "step": 41
461
+ },
462
+ {
463
+ "completion_length": 687.6504974365234,
464
+ "epoch": 0.470258922323303,
465
+ "grad_norm": 0.13686875998973846,
466
+ "learning_rate": 3e-06,
467
+ "loss": 0.0,
468
+ "reward": 0.4253826420754194,
469
+ "reward_std": 0.1371575309894979,
470
+ "rewards/accuracy_reward": 0.4253826420754194,
471
+ "step": 42
472
+ },
473
+ {
474
+ "completion_length": 789.5031661987305,
475
+ "epoch": 0.4814555633310007,
476
+ "grad_norm": 0.1229076161980629,
477
+ "learning_rate": 3e-06,
478
+ "loss": 0.0,
479
+ "reward": 0.3954081544652581,
480
+ "reward_std": 0.11565714655444026,
481
+ "rewards/accuracy_reward": 0.3954081544652581,
482
+ "step": 43
483
+ },
484
+ {
485
+ "completion_length": 765.0101890563965,
486
+ "epoch": 0.4926522043386984,
487
+ "grad_norm": 0.17409658432006836,
488
+ "learning_rate": 3e-06,
489
+ "loss": 0.0,
490
+ "reward": 0.42665815632790327,
491
+ "reward_std": 0.1478876848705113,
492
+ "rewards/accuracy_reward": 0.42665815632790327,
493
+ "step": 44
494
+ },
495
+ {
496
+ "completion_length": 741.691951751709,
497
+ "epoch": 0.5038488453463961,
498
+ "grad_norm": 0.19942258298397064,
499
+ "learning_rate": 3e-06,
500
+ "loss": 0.0,
501
+ "reward": 0.4323979513719678,
502
+ "reward_std": 0.13503032480366528,
503
+ "rewards/accuracy_reward": 0.4323979513719678,
504
+ "step": 45
505
+ },
506
+ {
507
+ "completion_length": 761.8099365234375,
508
+ "epoch": 0.5150454863540938,
509
+ "grad_norm": 0.13838064670562744,
510
+ "learning_rate": 3e-06,
511
+ "loss": 0.0,
512
+ "reward": 0.39413264486938715,
513
+ "reward_std": 0.11990180658176541,
514
+ "rewards/accuracy_reward": 0.39413264486938715,
515
+ "step": 46
516
+ },
517
+ {
518
+ "completion_length": 760.2117118835449,
519
+ "epoch": 0.5262421273617914,
520
+ "grad_norm": 0.1158590167760849,
521
+ "learning_rate": 3e-06,
522
+ "loss": 0.0,
523
+ "reward": 0.40369896963238716,
524
+ "reward_std": 0.139884436968714,
525
+ "rewards/accuracy_reward": 0.40369896963238716,
526
+ "step": 47
527
+ },
528
+ {
529
+ "completion_length": 765.3348045349121,
530
+ "epoch": 0.5374387683694891,
531
+ "grad_norm": 0.17314597964286804,
532
+ "learning_rate": 3e-06,
533
+ "loss": 0.0,
534
+ "reward": 0.36607141979038715,
535
+ "reward_std": 0.12787795555777848,
536
+ "rewards/accuracy_reward": 0.36607141979038715,
537
+ "step": 48
538
+ },
539
+ {
540
+ "completion_length": 778.6645202636719,
541
+ "epoch": 0.5486354093771868,
542
+ "grad_norm": 0.14133551716804504,
543
+ "learning_rate": 3e-06,
544
+ "loss": 0.0,
545
+ "reward": 0.3813775386661291,
546
+ "reward_std": 0.12611543014645576,
547
+ "rewards/accuracy_reward": 0.3813775386661291,
548
+ "step": 49
549
+ },
550
+ {
551
+ "completion_length": 739.5631217956543,
552
+ "epoch": 0.5598320503848845,
553
+ "grad_norm": 0.10777953267097473,
554
+ "learning_rate": 3e-06,
555
+ "loss": 0.0,
556
+ "reward": 0.4381377473473549,
557
+ "reward_std": 0.12034807563759387,
558
+ "rewards/accuracy_reward": 0.4381377473473549,
559
+ "step": 50
560
+ },
561
+ {
562
+ "completion_length": 777.4795761108398,
563
+ "epoch": 0.5710286913925823,
564
+ "grad_norm": 0.349727988243103,
565
+ "learning_rate": 3e-06,
566
+ "loss": 0.0,
567
+ "reward": 0.3947704005986452,
568
+ "reward_std": 0.1090469197370112,
569
+ "rewards/accuracy_reward": 0.3947704005986452,
570
+ "step": 51
571
+ },
572
+ {
573
+ "completion_length": 749.7888832092285,
574
+ "epoch": 0.58222533240028,
575
+ "grad_norm": 0.45803913474082947,
576
+ "learning_rate": 3e-06,
577
+ "loss": 0.0,
578
+ "reward": 0.3909438708797097,
579
+ "reward_std": 0.13125263480469584,
580
+ "rewards/accuracy_reward": 0.3909438708797097,
581
+ "step": 52
582
+ },
583
+ {
584
+ "completion_length": 731.6294479370117,
585
+ "epoch": 0.5934219734079776,
586
+ "grad_norm": 0.6970997452735901,
587
+ "learning_rate": 3e-06,
588
+ "loss": 0.0,
589
+ "reward": 0.4923469312489033,
590
+ "reward_std": 0.17931061703711748,
591
+ "rewards/accuracy_reward": 0.4923469312489033,
592
+ "step": 53
593
+ },
594
+ {
595
+ "completion_length": 746.658145904541,
596
+ "epoch": 0.6046186144156753,
597
+ "grad_norm": 1.771281361579895,
598
+ "learning_rate": 3e-06,
599
+ "loss": 0.0,
600
+ "reward": 0.3934948928654194,
601
+ "reward_std": 0.1266880240291357,
602
+ "rewards/accuracy_reward": 0.3934948928654194,
603
+ "step": 54
604
+ },
605
+ {
606
+ "completion_length": 707.3239631652832,
607
+ "epoch": 0.615815255423373,
608
+ "grad_norm": 3.0594873428344727,
609
+ "learning_rate": 3e-06,
610
+ "loss": 0.0,
611
+ "reward": 0.42729591205716133,
612
+ "reward_std": 0.12295506754890084,
613
+ "rewards/accuracy_reward": 0.42729591205716133,
614
+ "step": 55
615
+ },
616
+ {
617
+ "completion_length": 754.7155456542969,
618
+ "epoch": 0.6270118964310707,
619
+ "grad_norm": 0.8483421802520752,
620
+ "learning_rate": 3e-06,
621
+ "loss": 0.0,
622
+ "reward": 0.42665815632790327,
623
+ "reward_std": 0.13817946589551866,
624
+ "rewards/accuracy_reward": 0.42665815632790327,
625
+ "step": 56
626
+ },
627
+ {
628
+ "completion_length": 739.8411827087402,
629
+ "epoch": 0.6382085374387684,
630
+ "grad_norm": 5.133347988128662,
631
+ "learning_rate": 3e-06,
632
+ "loss": 0.0,
633
+ "reward": 0.43494897335767746,
634
+ "reward_std": 0.1543779973872006,
635
+ "rewards/accuracy_reward": 0.43494897335767746,
636
+ "step": 57
637
+ },
638
+ {
639
+ "completion_length": 747.3603248596191,
640
+ "epoch": 0.6494051784464661,
641
+ "grad_norm": 2.267815351486206,
642
+ "learning_rate": 3e-06,
643
+ "loss": 0.0,
644
+ "reward": 0.414540808647871,
645
+ "reward_std": 0.14408436114899814,
646
+ "rewards/accuracy_reward": 0.414540808647871,
647
+ "step": 58
648
+ },
649
+ {
650
+ "completion_length": 736.4936027526855,
651
+ "epoch": 0.6606018194541637,
652
+ "grad_norm": 1.127752661705017,
653
+ "learning_rate": 3e-06,
654
+ "loss": 0.0,
655
+ "reward": 0.400510192848742,
656
+ "reward_std": 0.10821045027114451,
657
+ "rewards/accuracy_reward": 0.400510192848742,
658
+ "step": 59
659
+ },
660
+ {
661
+ "completion_length": 752.1415672302246,
662
+ "epoch": 0.6717984604618614,
663
+ "grad_norm": 1.0189523696899414,
664
+ "learning_rate": 3e-06,
665
+ "loss": 0.0,
666
+ "reward": 0.4126275419257581,
667
+ "reward_std": 0.12289111129939556,
668
+ "rewards/accuracy_reward": 0.4126275419257581,
669
+ "step": 60
670
+ },
671
+ {
672
+ "completion_length": 785.941951751709,
673
+ "epoch": 0.6829951014695591,
674
+ "grad_norm": 1.3853994607925415,
675
+ "learning_rate": 3e-06,
676
+ "loss": 0.0,
677
+ "reward": 0.36096938140690327,
678
+ "reward_std": 0.14290725137107074,
679
+ "rewards/accuracy_reward": 0.36096938140690327,
680
+ "step": 61
681
+ },
682
+ {
683
+ "completion_length": 736.9368476867676,
684
+ "epoch": 0.6941917424772568,
685
+ "grad_norm": 0.6334269046783447,
686
+ "learning_rate": 3e-06,
687
+ "loss": 0.0,
688
+ "reward": 0.43686223588883877,
689
+ "reward_std": 0.13453931966796517,
690
+ "rewards/accuracy_reward": 0.43686223588883877,
691
+ "step": 62
692
+ },
693
+ {
694
+ "completion_length": 745.4457702636719,
695
+ "epoch": 0.7053883834849545,
696
+ "grad_norm": 1.0885730981826782,
697
+ "learning_rate": 3e-06,
698
+ "loss": 0.0,
699
+ "reward": 0.45408162102103233,
700
+ "reward_std": 0.12036089389584959,
701
+ "rewards/accuracy_reward": 0.45408162102103233,
702
+ "step": 63
703
+ },
704
+ {
705
+ "completion_length": 755.409423828125,
706
+ "epoch": 0.7165850244926522,
707
+ "grad_norm": 0.753265917301178,
708
+ "learning_rate": 3e-06,
709
+ "loss": 0.0,
710
+ "reward": 0.452168358489871,
711
+ "reward_std": 0.1216771425679326,
712
+ "rewards/accuracy_reward": 0.452168358489871,
713
+ "step": 64
714
+ },
715
+ {
716
+ "completion_length": 767.2990875244141,
717
+ "epoch": 0.72778166550035,
718
+ "grad_norm": 0.7473352551460266,
719
+ "learning_rate": 3e-06,
720
+ "loss": 0.0,
721
+ "reward": 0.4011479467153549,
722
+ "reward_std": 0.12710385350510478,
723
+ "rewards/accuracy_reward": 0.4011479467153549,
724
+ "step": 65
725
+ },
726
+ {
727
+ "completion_length": 749.1913146972656,
728
+ "epoch": 0.7389783065080476,
729
+ "grad_norm": 0.7118561267852783,
730
+ "learning_rate": 3e-06,
731
+ "loss": 0.0,
732
+ "reward": 0.33418366499245167,
733
+ "reward_std": 0.1169286584481597,
734
+ "rewards/accuracy_reward": 0.33418366499245167,
735
+ "step": 66
736
+ },
737
+ {
738
+ "completion_length": 749.1740875244141,
739
+ "epoch": 0.7501749475157453,
740
+ "grad_norm": 1.282776951789856,
741
+ "learning_rate": 3e-06,
742
+ "loss": 0.0,
743
+ "reward": 0.4317601975053549,
744
+ "reward_std": 0.1398092587478459,
745
+ "rewards/accuracy_reward": 0.4317601975053549,
746
+ "step": 67
747
+ },
748
+ {
749
+ "completion_length": 725.507640838623,
750
+ "epoch": 0.761371588523443,
751
+ "grad_norm": 1.5337843894958496,
752
+ "learning_rate": 3e-06,
753
+ "loss": 0.0,
754
+ "reward": 0.41262754052877426,
755
+ "reward_std": 0.1240762178786099,
756
+ "rewards/accuracy_reward": 0.41262754052877426,
757
+ "step": 68
758
+ },
759
+ {
760
+ "completion_length": 762.5490913391113,
761
+ "epoch": 0.7725682295311407,
762
+ "grad_norm": 0.6803719997406006,
763
+ "learning_rate": 3e-06,
764
+ "loss": 0.0,
765
+ "reward": 0.3998724380508065,
766
+ "reward_std": 0.14388926466926932,
767
+ "rewards/accuracy_reward": 0.3998724380508065,
768
+ "step": 69
769
+ },
770
+ {
771
+ "completion_length": 736.7321319580078,
772
+ "epoch": 0.7837648705388384,
773
+ "grad_norm": 0.8348100781440735,
774
+ "learning_rate": 3e-06,
775
+ "loss": 0.0,
776
+ "reward": 0.4400510163977742,
777
+ "reward_std": 0.16068750014528632,
778
+ "rewards/accuracy_reward": 0.4400510163977742,
779
+ "step": 70
780
+ },
781
+ {
782
+ "completion_length": 776.1109466552734,
783
+ "epoch": 0.794961511546536,
784
+ "grad_norm": 0.8664807677268982,
785
+ "learning_rate": 3e-06,
786
+ "loss": 0.0,
787
+ "reward": 0.37436223588883877,
788
+ "reward_std": 0.1090405157301575,
789
+ "rewards/accuracy_reward": 0.37436223588883877,
790
+ "step": 71
791
+ },
792
+ {
793
+ "completion_length": 740.8290710449219,
794
+ "epoch": 0.8061581525542337,
795
+ "grad_norm": 0.653354823589325,
796
+ "learning_rate": 3e-06,
797
+ "loss": 0.0,
798
+ "reward": 0.422193868085742,
799
+ "reward_std": 0.10819763550534844,
800
+ "rewards/accuracy_reward": 0.422193868085742,
801
+ "step": 72
802
+ },
803
+ {
804
+ "completion_length": 757.2959022521973,
805
+ "epoch": 0.8173547935619314,
806
+ "grad_norm": 3.8601436614990234,
807
+ "learning_rate": 3e-06,
808
+ "loss": 0.0,
809
+ "reward": 0.4808673430234194,
810
+ "reward_std": 0.1389840147458017,
811
+ "rewards/accuracy_reward": 0.4808673430234194,
812
+ "step": 73
813
+ },
814
+ {
815
+ "completion_length": 764.6084060668945,
816
+ "epoch": 0.8285514345696291,
817
+ "grad_norm": 3.1642909049987793,
818
+ "learning_rate": 3e-06,
819
+ "loss": 0.0,
820
+ "reward": 0.3864795845001936,
821
+ "reward_std": 0.1433918485417962,
822
+ "rewards/accuracy_reward": 0.3864795845001936,
823
+ "step": 74
824
+ },
825
+ {
826
+ "completion_length": 718.1115913391113,
827
+ "epoch": 0.8397480755773268,
828
+ "grad_norm": 0.8680428862571716,
829
+ "learning_rate": 3e-06,
830
+ "loss": 0.0,
831
+ "reward": 0.43303570430725813,
832
+ "reward_std": 0.10496690985746682,
833
+ "rewards/accuracy_reward": 0.43303570430725813,
834
+ "step": 75
835
+ },
836
+ {
837
+ "completion_length": 827.1135025024414,
838
+ "epoch": 0.8509447165850245,
839
+ "grad_norm": 1.043720006942749,
840
+ "learning_rate": 3e-06,
841
+ "loss": 0.0,
842
+ "reward": 0.40178570710122585,
843
+ "reward_std": 0.13079995079897344,
844
+ "rewards/accuracy_reward": 0.40178570710122585,
845
+ "step": 76
846
+ },
847
+ {
848
+ "completion_length": 726.0165634155273,
849
+ "epoch": 0.8621413575927221,
850
+ "grad_norm": 0.9036036729812622,
851
+ "learning_rate": 3e-06,
852
+ "loss": 0.0,
853
+ "reward": 0.4693877473473549,
854
+ "reward_std": 0.1229550673160702,
855
+ "rewards/accuracy_reward": 0.4693877473473549,
856
+ "step": 77
857
+ },
858
+ {
859
+ "completion_length": 758.820140838623,
860
+ "epoch": 0.8733379986004198,
861
+ "grad_norm": 1.107183575630188,
862
+ "learning_rate": 3e-06,
863
+ "loss": 0.0,
864
+ "reward": 0.389030606020242,
865
+ "reward_std": 0.11657038610428572,
866
+ "rewards/accuracy_reward": 0.389030606020242,
867
+ "step": 78
868
+ },
869
+ {
870
+ "completion_length": 751.1798362731934,
871
+ "epoch": 0.8845346396081175,
872
+ "grad_norm": 1.0681264400482178,
873
+ "learning_rate": 3e-06,
874
+ "loss": 0.0,
875
+ "reward": 0.4068877473473549,
876
+ "reward_std": 0.11915174382738769,
877
+ "rewards/accuracy_reward": 0.4068877473473549,
878
+ "step": 79
879
+ },
880
+ {
881
+ "completion_length": 769.7729415893555,
882
+ "epoch": 0.8957312806158153,
883
+ "grad_norm": 1.9977368116378784,
884
+ "learning_rate": 3e-06,
885
+ "loss": 0.0,
886
+ "reward": 0.41900509502738714,
887
+ "reward_std": 0.1269023446366191,
888
+ "rewards/accuracy_reward": 0.41900509502738714,
889
+ "step": 80
890
+ },
891
+ {
892
+ "completion_length": 806.9208984375,
893
+ "epoch": 0.906927921623513,
894
+ "grad_norm": 2.3192858695983887,
895
+ "learning_rate": 3e-06,
896
+ "loss": 0.0,
897
+ "reward": 0.45408162474632263,
898
+ "reward_std": 0.1139010286424309,
899
+ "rewards/accuracy_reward": 0.45408162474632263,
900
+ "step": 81
901
+ },
902
+ {
903
+ "completion_length": 756.2856941223145,
904
+ "epoch": 0.9181245626312107,
905
+ "grad_norm": 1.9081544876098633,
906
+ "learning_rate": 3e-06,
907
+ "loss": 0.0,
908
+ "reward": 0.42091835755854845,
909
+ "reward_std": 0.1216771425679326,
910
+ "rewards/accuracy_reward": 0.42091835755854845,
911
+ "step": 82
912
+ },
913
+ {
914
+ "completion_length": 810.2716598510742,
915
+ "epoch": 0.9293212036389084,
916
+ "grad_norm": 3.4622349739074707,
917
+ "learning_rate": 3e-06,
918
+ "loss": 0.0,
919
+ "reward": 0.3686224380508065,
920
+ "reward_std": 0.1060064712073654,
921
+ "rewards/accuracy_reward": 0.3686224380508065,
922
+ "step": 83
923
+ },
924
+ {
925
+ "completion_length": 720.8679637908936,
926
+ "epoch": 0.940517844646606,
927
+ "grad_norm": 2.7656006813049316,
928
+ "learning_rate": 3e-06,
929
+ "loss": 0.0,
930
+ "reward": 0.4355867253616452,
931
+ "reward_std": 0.13207787927240133,
932
+ "rewards/accuracy_reward": 0.4355867253616452,
933
+ "step": 84
934
+ },
935
+ {
936
+ "completion_length": 760.388370513916,
937
+ "epoch": 0.9517144856543037,
938
+ "grad_norm": 5.173759937286377,
939
+ "learning_rate": 3e-06,
940
+ "loss": 0.0,
941
+ "reward": 0.4317601937800646,
942
+ "reward_std": 0.12493191100656986,
943
+ "rewards/accuracy_reward": 0.4317601937800646,
944
+ "step": 85
945
+ },
946
+ {
947
+ "completion_length": 746.6460304260254,
948
+ "epoch": 0.9629111266620014,
949
+ "grad_norm": 3.111050844192505,
950
+ "learning_rate": 3e-06,
951
+ "loss": 0.0,
952
+ "reward": 0.44579080678522587,
953
+ "reward_std": 0.09203596017323434,
954
+ "rewards/accuracy_reward": 0.44579080678522587,
955
+ "step": 86
956
+ },
957
+ {
958
+ "completion_length": 719.7404174804688,
959
+ "epoch": 0.9741077676696991,
960
+ "grad_norm": 2.178539276123047,
961
+ "learning_rate": 3e-06,
962
+ "loss": 0.0,
963
+ "reward": 0.4253826439380646,
964
+ "reward_std": 0.1273181731812656,
965
+ "rewards/accuracy_reward": 0.4253826439380646,
966
+ "step": 87
967
+ },
968
+ {
969
+ "completion_length": 769.220645904541,
970
+ "epoch": 0.9853044086773968,
971
+ "grad_norm": 1.5965837240219116,
972
+ "learning_rate": 3e-06,
973
+ "loss": 0.0,
974
+ "reward": 0.4075255058705807,
975
+ "reward_std": 0.12709103501401842,
976
+ "rewards/accuracy_reward": 0.4075255058705807,
977
+ "step": 88
978
+ },
979
+ {
980
+ "completion_length": 774.408145904541,
981
+ "epoch": 0.9965010496850945,
982
+ "grad_norm": 2.0273616313934326,
983
+ "learning_rate": 3e-06,
984
+ "loss": 0.0,
985
+ "reward": 0.3966836631298065,
986
+ "reward_std": 0.11341002094559371,
987
+ "rewards/accuracy_reward": 0.3966836631298065,
988
+ "step": 89
989
+ },
990
+ {
991
+ "epoch": 0.9965010496850945,
992
+ "step": 89,
993
+ "total_flos": 0.0,
994
+ "train_loss": 0.0,
995
+ "train_runtime": 2.2646,
996
+ "train_samples_per_second": 8831.586,
997
+ "train_steps_per_second": 39.301
998
+ }
999
+ ],
1000
+ "logging_steps": 1,
1001
+ "max_steps": 89,
1002
+ "num_input_tokens_seen": 0,
1003
+ "num_train_epochs": 1,
1004
+ "save_steps": 20,
1005
+ "stateful_callbacks": {
1006
+ "TrainerControl": {
1007
+ "args": {
1008
+ "should_epoch_stop": false,
1009
+ "should_evaluate": false,
1010
+ "should_log": false,
1011
+ "should_save": true,
1012
+ "should_training_stop": true
1013
+ },
1014
+ "attributes": {}
1015
+ }
1016
+ },
1017
+ "total_flos": 0.0,
1018
+ "train_batch_size": 2,
1019
+ "trial_name": null,
1020
+ "trial_params": null
1021
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3840212b8e8f28e646d53ab9700d941328516a6c68e9b2f589c25cf02284f02e
3
+ size 7544
vocab.json ADDED
The diff for this file is too large to render. See raw diff