Haitao999 commited on
Commit
05d7c11
·
verified ·
1 Parent(s): 43e698d

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ model_name: Qwen2.5-7B-GRPO-NM-COT-20K-2epoch
4
+ tags:
5
+ - generated_from_trainer
6
+ - trl
7
+ - grpo
8
+ licence: license
9
+ ---
10
+
11
+ # Model Card for Qwen2.5-7B-GRPO-NM-COT-20K-2epoch
12
+
13
+ This model is a fine-tuned version of [None](https://huggingface.co/None).
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
+
16
+ ## Quick start
17
+
18
+ ```python
19
+ from transformers import pipeline
20
+
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="Haitao999/Qwen2.5-7B-GRPO-NM-COT-20K-2epoch", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
+
27
+ ## Training procedure
28
+
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tjucsailab/huggingface/runs/chvintya)
30
+
31
+
32
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.14.0
37
+ - Transformers: 4.48.3
38
+ - Pytorch: 2.5.1+cu124
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.21.0
41
+
42
+ ## Citations
43
+
44
+ Cite GRPO as:
45
+
46
+ ```bibtex
47
+ @article{zhihong2024deepseekmath,
48
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
49
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
50
+ year = 2024,
51
+ eprint = {arXiv:2402.03300},
52
+ }
53
+
54
+ ```
55
+
56
+ Cite TRL as:
57
+
58
+ ```bibtex
59
+ @misc{vonwerra2022trl,
60
+ title = {{TRL: Transformer Reinforcement Learning}},
61
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
62
+ year = 2020,
63
+ journal = {GitHub repository},
64
+ publisher = {GitHub},
65
+ howpublished = {\url{https://github.com/huggingface/trl}}
66
+ }
67
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 2.155859272374791e-08,
4
+ "train_runtime": 56373.7111,
5
+ "train_samples": 20000,
6
+ "train_samples_per_second": 0.355,
7
+ "train_steps_per_second": 0.002
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/wuhaitao/research/EMPO/output/data/Qwen2.5-7B-GRPO-NM-COT-20K",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.48.3"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4854f639bddb6f633e83d632ced500e3165c17935ef28a798c5f4c0d17b045e8
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9a4f29e3b7993420dc5d5597e635352cc97243ec7ab4d5080d4c4a5494d0ebf
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614bc782578cd9b2059c66411d7a5f4a1de0831e27071aa790b230afff7908c7
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1a822953118d75e6aab338f89b280819c0803fa72743ac12d9759d8f62a3c8d
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
runs/Apr01_16-22-10_SH-IDC1-10-140-1-77/events.out.tfevents.1743495830.SH-IDC1-10-140-1-77 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c7648bca71a523bb5cc8ba62fe8606928a03ccdc7640cb6a34026244875ac40
3
+ size 45527
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 2.155859272374791e-08,
4
+ "train_runtime": 56373.7111,
5
+ "train_samples": 20000,
6
+ "train_samples_per_second": 0.355,
7
+ "train_steps_per_second": 0.002
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9965010496850945,
5
+ "eval_steps": 100,
6
+ "global_step": 89,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 776.6575088500977,
13
+ "epoch": 0.01119664100769769,
14
+ "grad_norm": 1.4259217977523804,
15
+ "learning_rate": 3e-06,
16
+ "loss": 0.0,
17
+ "reward": 0.4336734637618065,
18
+ "reward_std": 0.13708234671503305,
19
+ "rewards/accuracy_reward": 0.4336734637618065,
20
+ "step": 1
21
+ },
22
+ {
23
+ "completion_length": 775.5478172302246,
24
+ "epoch": 0.02239328201539538,
25
+ "grad_norm": 1.6899404525756836,
26
+ "learning_rate": 3e-06,
27
+ "loss": 0.0,
28
+ "reward": 0.3609693795442581,
29
+ "reward_std": 0.12760126357898116,
30
+ "rewards/accuracy_reward": 0.3609693795442581,
31
+ "step": 2
32
+ },
33
+ {
34
+ "completion_length": 770.4444999694824,
35
+ "epoch": 0.03358992302309307,
36
+ "grad_norm": 1.1099838018417358,
37
+ "learning_rate": 3e-06,
38
+ "loss": 0.0,
39
+ "reward": 0.41772958543151617,
40
+ "reward_std": 0.0995770595036447,
41
+ "rewards/accuracy_reward": 0.41772958543151617,
42
+ "step": 3
43
+ },
44
+ {
45
+ "completion_length": 763.253173828125,
46
+ "epoch": 0.04478656403079076,
47
+ "grad_norm": 1.734800100326538,
48
+ "learning_rate": 3e-06,
49
+ "loss": 0.0,
50
+ "reward": 0.42602039594203234,
51
+ "reward_std": 0.10463267145678401,
52
+ "rewards/accuracy_reward": 0.42602039594203234,
53
+ "step": 4
54
+ },
55
+ {
56
+ "completion_length": 728.0452613830566,
57
+ "epoch": 0.05598320503848846,
58
+ "grad_norm": 1.9766837358474731,
59
+ "learning_rate": 3e-06,
60
+ "loss": 0.0,
61
+ "reward": 0.412627543322742,
62
+ "reward_std": 0.1070892985444516,
63
+ "rewards/accuracy_reward": 0.412627543322742,
64
+ "step": 5
65
+ },
66
+ {
67
+ "completion_length": 771.2640113830566,
68
+ "epoch": 0.06717984604618614,
69
+ "grad_norm": 1.5028815269470215,
70
+ "learning_rate": 3e-06,
71
+ "loss": 0.0,
72
+ "reward": 0.3877550968900323,
73
+ "reward_std": 0.11859837244264781,
74
+ "rewards/accuracy_reward": 0.3877550968900323,
75
+ "step": 6
76
+ },
77
+ {
78
+ "completion_length": 744.927921295166,
79
+ "epoch": 0.07837648705388384,
80
+ "grad_norm": 2.0006868839263916,
81
+ "learning_rate": 3e-06,
82
+ "loss": 0.0,
83
+ "reward": 0.426658152602613,
84
+ "reward_std": 0.11621210724115372,
85
+ "rewards/accuracy_reward": 0.426658152602613,
86
+ "step": 7
87
+ },
88
+ {
89
+ "completion_length": 776.862865447998,
90
+ "epoch": 0.08957312806158152,
91
+ "grad_norm": 2.4789130687713623,
92
+ "learning_rate": 3e-06,
93
+ "loss": 0.0,
94
+ "reward": 0.3558673383668065,
95
+ "reward_std": 0.12130605196580291,
96
+ "rewards/accuracy_reward": 0.3558673383668065,
97
+ "step": 8
98
+ },
99
+ {
100
+ "completion_length": 778.5867118835449,
101
+ "epoch": 0.10076976906927922,
102
+ "grad_norm": 1.8755781650543213,
103
+ "learning_rate": 3e-06,
104
+ "loss": 0.0,
105
+ "reward": 0.41581631638109684,
106
+ "reward_std": 0.10032712062820792,
107
+ "rewards/accuracy_reward": 0.41581631638109684,
108
+ "step": 9
109
+ },
110
+ {
111
+ "completion_length": 749.0809860229492,
112
+ "epoch": 0.11196641007697691,
113
+ "grad_norm": 2.071565628051758,
114
+ "learning_rate": 3e-06,
115
+ "loss": 0.0,
116
+ "reward": 0.4030612176284194,
117
+ "reward_std": 0.11739562568254769,
118
+ "rewards/accuracy_reward": 0.4030612176284194,
119
+ "step": 10
120
+ },
121
+ {
122
+ "completion_length": 814.1294441223145,
123
+ "epoch": 0.1231630510846746,
124
+ "grad_norm": 5.151350021362305,
125
+ "learning_rate": 3e-06,
126
+ "loss": 0.0,
127
+ "reward": 0.37436224054545164,
128
+ "reward_std": 0.14050176995806396,
129
+ "rewards/accuracy_reward": 0.37436224054545164,
130
+ "step": 11
131
+ },
132
+ {
133
+ "completion_length": 757.7876129150391,
134
+ "epoch": 0.13435969209237228,
135
+ "grad_norm": 1.5203074216842651,
136
+ "learning_rate": 3e-06,
137
+ "loss": 0.0,
138
+ "reward": 0.41709182877093554,
139
+ "reward_std": 0.1278091778513044,
140
+ "rewards/accuracy_reward": 0.41709182877093554,
141
+ "step": 12
142
+ },
143
+ {
144
+ "completion_length": 777.004451751709,
145
+ "epoch": 0.14555633310007,
146
+ "grad_norm": 2.49013614654541,
147
+ "learning_rate": 3e-06,
148
+ "loss": 0.0,
149
+ "reward": 0.42410713247954845,
150
+ "reward_std": 0.13054731115698814,
151
+ "rewards/accuracy_reward": 0.42410713247954845,
152
+ "step": 13
153
+ },
154
+ {
155
+ "completion_length": 757.3265151977539,
156
+ "epoch": 0.15675297410776767,
157
+ "grad_norm": 3.2910609245300293,
158
+ "learning_rate": 3e-06,
159
+ "loss": 0.0,
160
+ "reward": 0.38201529905200005,
161
+ "reward_std": 0.10587374167516828,
162
+ "rewards/accuracy_reward": 0.38201529905200005,
163
+ "step": 14
164
+ },
165
+ {
166
+ "completion_length": 806.7212867736816,
167
+ "epoch": 0.16794961511546536,
168
+ "grad_norm": 3.803057909011841,
169
+ "learning_rate": 3e-06,
170
+ "loss": 0.0,
171
+ "reward": 0.3826530510559678,
172
+ "reward_std": 0.1126359230838716,
173
+ "rewards/accuracy_reward": 0.3826530510559678,
174
+ "step": 15
175
+ },
176
+ {
177
+ "completion_length": 783.6211624145508,
178
+ "epoch": 0.17914625612316304,
179
+ "grad_norm": 5.312828540802002,
180
+ "learning_rate": 3e-06,
181
+ "loss": 0.0,
182
+ "reward": 0.3998724380508065,
183
+ "reward_std": 0.1370647200383246,
184
+ "rewards/accuracy_reward": 0.3998724380508065,
185
+ "step": 16
186
+ },
187
+ {
188
+ "completion_length": 751.4138832092285,
189
+ "epoch": 0.19034289713086075,
190
+ "grad_norm": 5.630074977874756,
191
+ "learning_rate": 3e-06,
192
+ "loss": 0.0,
193
+ "reward": 0.3985969312489033,
194
+ "reward_std": 0.1044071288779378,
195
+ "rewards/accuracy_reward": 0.3985969312489033,
196
+ "step": 17
197
+ },
198
+ {
199
+ "completion_length": 740.3303375244141,
200
+ "epoch": 0.20153953813855843,
201
+ "grad_norm": 3.4527852535247803,
202
+ "learning_rate": 3e-06,
203
+ "loss": 0.0,
204
+ "reward": 0.45153060369193554,
205
+ "reward_std": 0.13771249912679195,
206
+ "rewards/accuracy_reward": 0.45153060369193554,
207
+ "step": 18
208
+ },
209
+ {
210
+ "completion_length": 762.7110862731934,
211
+ "epoch": 0.21273617914625612,
212
+ "grad_norm": 2.000288724899292,
213
+ "learning_rate": 3e-06,
214
+ "loss": 0.0,
215
+ "reward": 0.44005101174116135,
216
+ "reward_std": 0.11361152515746653,
217
+ "rewards/accuracy_reward": 0.44005101174116135,
218
+ "step": 19
219
+ },
220
+ {
221
+ "completion_length": 754.8182258605957,
222
+ "epoch": 0.22393282015395383,
223
+ "grad_norm": 2.939009189605713,
224
+ "learning_rate": 3e-06,
225
+ "loss": 0.0,
226
+ "reward": 0.4623724361881614,
227
+ "reward_std": 0.1443291292525828,
228
+ "rewards/accuracy_reward": 0.4623724361881614,
229
+ "step": 20
230
+ },
231
+ {
232
+ "completion_length": 804.9897804260254,
233
+ "epoch": 0.2351294611616515,
234
+ "grad_norm": 3.3701393604278564,
235
+ "learning_rate": 3e-06,
236
+ "loss": 0.0,
237
+ "reward": 0.42219387367367744,
238
+ "reward_std": 0.12525973934680223,
239
+ "rewards/accuracy_reward": 0.42219387367367744,
240
+ "step": 21
241
+ },
242
+ {
243
+ "completion_length": 760.9719276428223,
244
+ "epoch": 0.2463261021693492,
245
+ "grad_norm": 4.5709004402160645,
246
+ "learning_rate": 3e-06,
247
+ "loss": 0.0,
248
+ "reward": 0.4604591690003872,
249
+ "reward_std": 0.13864337070845068,
250
+ "rewards/accuracy_reward": 0.4604591690003872,
251
+ "step": 22
252
+ },
253
+ {
254
+ "completion_length": 747.7378578186035,
255
+ "epoch": 0.2575227431770469,
256
+ "grad_norm": 4.603999137878418,
257
+ "learning_rate": 3e-06,
258
+ "loss": 0.0,
259
+ "reward": 0.4559948891401291,
260
+ "reward_std": 0.11444317712448537,
261
+ "rewards/accuracy_reward": 0.4559948891401291,
262
+ "step": 23
263
+ },
264
+ {
265
+ "completion_length": 776.5950050354004,
266
+ "epoch": 0.26871938418474456,
267
+ "grad_norm": 3.4199488162994385,
268
+ "learning_rate": 3e-06,
269
+ "loss": 0.0,
270
+ "reward": 0.38711733650416136,
271
+ "reward_std": 0.12604024447500706,
272
+ "rewards/accuracy_reward": 0.38711733650416136,
273
+ "step": 24
274
+ },
275
+ {
276
+ "completion_length": 805.4457778930664,
277
+ "epoch": 0.27991602519244224,
278
+ "grad_norm": 2.1585614681243896,
279
+ "learning_rate": 3e-06,
280
+ "loss": 0.0,
281
+ "reward": 0.34757652413100004,
282
+ "reward_std": 0.09647424682043493,
283
+ "rewards/accuracy_reward": 0.34757652413100004,
284
+ "step": 25
285
+ },
286
+ {
287
+ "completion_length": 756.6740798950195,
288
+ "epoch": 0.29111266620014,
289
+ "grad_norm": 4.483582973480225,
290
+ "learning_rate": 3e-06,
291
+ "loss": 0.0,
292
+ "reward": 0.4100765222683549,
293
+ "reward_std": 0.11235282756388187,
294
+ "rewards/accuracy_reward": 0.4100765222683549,
295
+ "step": 26
296
+ },
297
+ {
298
+ "completion_length": 783.984676361084,
299
+ "epoch": 0.30230930720783766,
300
+ "grad_norm": 4.353560447692871,
301
+ "learning_rate": 3e-06,
302
+ "loss": 0.0,
303
+ "reward": 0.4081632560119033,
304
+ "reward_std": 0.12413217849098146,
305
+ "rewards/accuracy_reward": 0.4081632560119033,
306
+ "step": 27
307
+ },
308
+ {
309
+ "completion_length": 785.7461547851562,
310
+ "epoch": 0.31350594821553535,
311
+ "grad_norm": 2.4794628620147705,
312
+ "learning_rate": 3e-06,
313
+ "loss": 0.0,
314
+ "reward": 0.3628826476633549,
315
+ "reward_std": 0.0991243754979223,
316
+ "rewards/accuracy_reward": 0.3628826476633549,
317
+ "step": 28
318
+ },
319
+ {
320
+ "completion_length": 730.373706817627,
321
+ "epoch": 0.32470258922323303,
322
+ "grad_norm": 4.818853855133057,
323
+ "learning_rate": 3e-06,
324
+ "loss": 0.0,
325
+ "reward": 0.48596937395632267,
326
+ "reward_std": 0.14916561311110854,
327
+ "rewards/accuracy_reward": 0.48596937395632267,
328
+ "step": 29
329
+ },
330
+ {
331
+ "completion_length": 798.7933502197266,
332
+ "epoch": 0.3358992302309307,
333
+ "grad_norm": 4.875724792480469,
334
+ "learning_rate": 3e-06,
335
+ "loss": 0.0,
336
+ "reward": 0.35650509130209684,
337
+ "reward_std": 0.13356371596455574,
338
+ "rewards/accuracy_reward": 0.35650509130209684,
339
+ "step": 30
340
+ },
341
+ {
342
+ "completion_length": 796.2346839904785,
343
+ "epoch": 0.3470958712386284,
344
+ "grad_norm": 10.593175888061523,
345
+ "learning_rate": 3e-06,
346
+ "loss": 0.0,
347
+ "reward": 0.3966836603358388,
348
+ "reward_std": 0.1197371541056782,
349
+ "rewards/accuracy_reward": 0.3966836603358388,
350
+ "step": 31
351
+ },
352
+ {
353
+ "completion_length": 770.2442512512207,
354
+ "epoch": 0.3582925122463261,
355
+ "grad_norm": 2.9329323768615723,
356
+ "learning_rate": 3e-06,
357
+ "loss": 0.0,
358
+ "reward": 0.4113520346581936,
359
+ "reward_std": 0.10089330864138901,
360
+ "rewards/accuracy_reward": 0.4113520346581936,
361
+ "step": 32
362
+ },
363
+ {
364
+ "completion_length": 775.821418762207,
365
+ "epoch": 0.3694891532540238,
366
+ "grad_norm": 12.537503242492676,
367
+ "learning_rate": 3e-06,
368
+ "loss": 0.0,
369
+ "reward": 0.4483418297022581,
370
+ "reward_std": 0.125624421518296,
371
+ "rewards/accuracy_reward": 0.4483418297022581,
372
+ "step": 33
373
+ },
374
+ {
375
+ "completion_length": 783.8558540344238,
376
+ "epoch": 0.3806857942617215,
377
+ "grad_norm": 4.941224575042725,
378
+ "learning_rate": 3e-06,
379
+ "loss": 0.0,
380
+ "reward": 0.40752549935132265,
381
+ "reward_std": 0.1238795283716172,
382
+ "rewards/accuracy_reward": 0.40752549935132265,
383
+ "step": 34
384
+ },
385
+ {
386
+ "completion_length": 835.3316078186035,
387
+ "epoch": 0.3918824352694192,
388
+ "grad_norm": 4.293496608734131,
389
+ "learning_rate": 3e-06,
390
+ "loss": 0.0,
391
+ "reward": 0.36670917458832264,
392
+ "reward_std": 0.13812832674011588,
393
+ "rewards/accuracy_reward": 0.36670917458832264,
394
+ "step": 35
395
+ },
396
+ {
397
+ "completion_length": 800.0905456542969,
398
+ "epoch": 0.40307907627711687,
399
+ "grad_norm": 19.928516387939453,
400
+ "learning_rate": 3e-06,
401
+ "loss": 0.0,
402
+ "reward": 0.4234693804755807,
403
+ "reward_std": 0.11749003268778324,
404
+ "rewards/accuracy_reward": 0.4234693804755807,
405
+ "step": 36
406
+ },
407
+ {
408
+ "completion_length": 767.5561103820801,
409
+ "epoch": 0.41427571728481455,
410
+ "grad_norm": 6.884653568267822,
411
+ "learning_rate": 3e-06,
412
+ "loss": 0.0,
413
+ "reward": 0.4445152971893549,
414
+ "reward_std": 0.09231905196793377,
415
+ "rewards/accuracy_reward": 0.4445152971893549,
416
+ "step": 37
417
+ },
418
+ {
419
+ "completion_length": 805.4872283935547,
420
+ "epoch": 0.42547235829251223,
421
+ "grad_norm": 24.017255783081055,
422
+ "learning_rate": 3e-06,
423
+ "loss": 0.0,
424
+ "reward": 0.40114795323461294,
425
+ "reward_std": 0.10263178893364966,
426
+ "rewards/accuracy_reward": 0.40114795323461294,
427
+ "step": 38
428
+ },
429
+ {
430
+ "completion_length": 801.1536827087402,
431
+ "epoch": 0.4366689993002099,
432
+ "grad_norm": 5.969362258911133,
433
+ "learning_rate": 3e-06,
434
+ "loss": 0.0,
435
+ "reward": 0.39604590833187103,
436
+ "reward_std": 0.10426798998378217,
437
+ "rewards/accuracy_reward": 0.39604590833187103,
438
+ "step": 39
439
+ },
440
+ {
441
+ "completion_length": 778.0669441223145,
442
+ "epoch": 0.44786564030790765,
443
+ "grad_norm": 7.667646884918213,
444
+ "learning_rate": 3e-06,
445
+ "loss": 0.0,
446
+ "reward": 0.44068876653909683,
447
+ "reward_std": 0.13503032876178622,
448
+ "rewards/accuracy_reward": 0.44068876653909683,
449
+ "step": 40
450
+ },
451
+ {
452
+ "completion_length": 777.1989631652832,
453
+ "epoch": 0.45906228131560534,
454
+ "grad_norm": 8.530767440795898,
455
+ "learning_rate": 3e-06,
456
+ "loss": 0.0,
457
+ "reward": 0.45854590740054846,
458
+ "reward_std": 0.1331926230341196,
459
+ "rewards/accuracy_reward": 0.45854590740054846,
460
+ "step": 41
461
+ },
462
+ {
463
+ "completion_length": 709.0452651977539,
464
+ "epoch": 0.470258922323303,
465
+ "grad_norm": 2.948634386062622,
466
+ "learning_rate": 3e-06,
467
+ "loss": 0.0,
468
+ "reward": 0.4279336668550968,
469
+ "reward_std": 0.13054730370640755,
470
+ "rewards/accuracy_reward": 0.4279336668550968,
471
+ "step": 42
472
+ },
473
+ {
474
+ "completion_length": 812.6842880249023,
475
+ "epoch": 0.4814555633310007,
476
+ "grad_norm": 63.21303939819336,
477
+ "learning_rate": 3e-06,
478
+ "loss": 0.0,
479
+ "reward": 0.4056122303009033,
480
+ "reward_std": 0.11122526740655303,
481
+ "rewards/accuracy_reward": 0.4056122303009033,
482
+ "step": 43
483
+ },
484
+ {
485
+ "completion_length": 794.6052093505859,
486
+ "epoch": 0.4926522043386984,
487
+ "grad_norm": 36.811729431152344,
488
+ "learning_rate": 3e-06,
489
+ "loss": 0.0,
490
+ "reward": 0.4387754984200001,
491
+ "reward_std": 0.11845282535068691,
492
+ "rewards/accuracy_reward": 0.4387754984200001,
493
+ "step": 44
494
+ },
495
+ {
496
+ "completion_length": 774.257640838623,
497
+ "epoch": 0.5038488453463961,
498
+ "grad_norm": 15.306803703308105,
499
+ "learning_rate": 3e-06,
500
+ "loss": 0.0,
501
+ "reward": 0.4419642761349678,
502
+ "reward_std": 0.12792909424751997,
503
+ "rewards/accuracy_reward": 0.4419642761349678,
504
+ "step": 45
505
+ },
506
+ {
507
+ "completion_length": 809.9763870239258,
508
+ "epoch": 0.5150454863540938,
509
+ "grad_norm": 18.062774658203125,
510
+ "learning_rate": 3e-06,
511
+ "loss": 0.0,
512
+ "reward": 0.39158162381500006,
513
+ "reward_std": 0.1342562234494835,
514
+ "rewards/accuracy_reward": 0.39158162381500006,
515
+ "step": 46
516
+ },
517
+ {
518
+ "completion_length": 801.1211700439453,
519
+ "epoch": 0.5262421273617914,
520
+ "grad_norm": 14.511787414550781,
521
+ "learning_rate": 3e-06,
522
+ "loss": 0.0,
523
+ "reward": 0.40752550307661295,
524
+ "reward_std": 0.13466564589180052,
525
+ "rewards/accuracy_reward": 0.40752550307661295,
526
+ "step": 47
527
+ },
528
+ {
529
+ "completion_length": 799.5650329589844,
530
+ "epoch": 0.5374387683694891,
531
+ "grad_norm": 11.552735328674316,
532
+ "learning_rate": 3e-06,
533
+ "loss": 0.0,
534
+ "reward": 0.3839285643771291,
535
+ "reward_std": 0.12077671871520579,
536
+ "rewards/accuracy_reward": 0.3839285643771291,
537
+ "step": 48
538
+ },
539
+ {
540
+ "completion_length": 796.6683540344238,
541
+ "epoch": 0.5486354093771868,
542
+ "grad_norm": 13.472460746765137,
543
+ "learning_rate": 3e-06,
544
+ "loss": 0.0,
545
+ "reward": 0.3966836668550968,
546
+ "reward_std": 0.12616657256148756,
547
+ "rewards/accuracy_reward": 0.3966836668550968,
548
+ "step": 49
549
+ },
550
+ {
551
+ "completion_length": 750.8067474365234,
552
+ "epoch": 0.5598320503848845,
553
+ "grad_norm": 13.930930137634277,
554
+ "learning_rate": 3e-06,
555
+ "loss": 0.0,
556
+ "reward": 0.4438775470480323,
557
+ "reward_std": 0.1101488508284092,
558
+ "rewards/accuracy_reward": 0.4438775470480323,
559
+ "step": 50
560
+ },
561
+ {
562
+ "completion_length": 780.1970520019531,
563
+ "epoch": 0.5710286913925823,
564
+ "grad_norm": 5.438718795776367,
565
+ "learning_rate": 3e-06,
566
+ "loss": 0.0,
567
+ "reward": 0.4017857061699033,
568
+ "reward_std": 0.09486208576709032,
569
+ "rewards/accuracy_reward": 0.4017857061699033,
570
+ "step": 51
571
+ },
572
+ {
573
+ "completion_length": 772.9202728271484,
574
+ "epoch": 0.58222533240028,
575
+ "grad_norm": 6.467463493347168,
576
+ "learning_rate": 3e-06,
577
+ "loss": 0.0,
578
+ "reward": 0.39795918203890324,
579
+ "reward_std": 0.11394576611928642,
580
+ "rewards/accuracy_reward": 0.39795918203890324,
581
+ "step": 52
582
+ },
583
+ {
584
+ "completion_length": 751.3756217956543,
585
+ "epoch": 0.5934219734079776,
586
+ "grad_norm": 7.1286139488220215,
587
+ "learning_rate": 3e-06,
588
+ "loss": 0.0,
589
+ "reward": 0.5063775442540646,
590
+ "reward_std": 0.152797756716609,
591
+ "rewards/accuracy_reward": 0.5063775442540646,
592
+ "step": 53
593
+ },
594
+ {
595
+ "completion_length": 773.2212867736816,
596
+ "epoch": 0.6046186144156753,
597
+ "grad_norm": 5.8168840408325195,
598
+ "learning_rate": 3e-06,
599
+ "loss": 0.0,
600
+ "reward": 0.3852040721103549,
601
+ "reward_std": 0.11522368853911757,
602
+ "rewards/accuracy_reward": 0.3852040721103549,
603
+ "step": 54
604
+ },
605
+ {
606
+ "completion_length": 720.9132423400879,
607
+ "epoch": 0.615815255423373,
608
+ "grad_norm": 4.343114852905273,
609
+ "learning_rate": 3e-06,
610
+ "loss": 0.0,
611
+ "reward": 0.4336734600365162,
612
+ "reward_std": 0.10637756483629346,
613
+ "rewards/accuracy_reward": 0.4336734600365162,
614
+ "step": 55
615
+ },
616
+ {
617
+ "completion_length": 769.654956817627,
618
+ "epoch": 0.6270118964310707,
619
+ "grad_norm": 4.029993534088135,
620
+ "learning_rate": 3e-06,
621
+ "loss": 0.0,
622
+ "reward": 0.4202806008979678,
623
+ "reward_std": 0.13102709129452705,
624
+ "rewards/accuracy_reward": 0.4202806008979678,
625
+ "step": 56
626
+ },
627
+ {
628
+ "completion_length": 750.3571243286133,
629
+ "epoch": 0.6382085374387684,
630
+ "grad_norm": 2.320124864578247,
631
+ "learning_rate": 3e-06,
632
+ "loss": 0.0,
633
+ "reward": 0.4547193767502904,
634
+ "reward_std": 0.12525333184748888,
635
+ "rewards/accuracy_reward": 0.4547193767502904,
636
+ "step": 57
637
+ },
638
+ {
639
+ "completion_length": 756.4540672302246,
640
+ "epoch": 0.6494051784464661,
641
+ "grad_norm": 5.077786922454834,
642
+ "learning_rate": 3e-06,
643
+ "loss": 0.0,
644
+ "reward": 0.42793366126716137,
645
+ "reward_std": 0.1169798003975302,
646
+ "rewards/accuracy_reward": 0.42793366126716137,
647
+ "step": 58
648
+ },
649
+ {
650
+ "completion_length": 741.6307258605957,
651
+ "epoch": 0.6606018194541637,
652
+ "grad_norm": 3.857607364654541,
653
+ "learning_rate": 3e-06,
654
+ "loss": 0.0,
655
+ "reward": 0.398596934042871,
656
+ "reward_std": 0.11093576485291123,
657
+ "rewards/accuracy_reward": 0.398596934042871,
658
+ "step": 59
659
+ },
660
+ {
661
+ "completion_length": 779.0318717956543,
662
+ "epoch": 0.6717984604618614,
663
+ "grad_norm": 2.3024513721466064,
664
+ "learning_rate": 3e-06,
665
+ "loss": 0.0,
666
+ "reward": 0.40624999161809683,
667
+ "reward_std": 0.11923973984085023,
668
+ "rewards/accuracy_reward": 0.40624999161809683,
669
+ "step": 60
670
+ },
671
+ {
672
+ "completion_length": 814.8584022521973,
673
+ "epoch": 0.6829951014695591,
674
+ "grad_norm": 4.7456374168396,
675
+ "learning_rate": 3e-06,
676
+ "loss": 0.0,
677
+ "reward": 0.36415816005319357,
678
+ "reward_std": 0.13503673416562378,
679
+ "rewards/accuracy_reward": 0.36415816005319357,
680
+ "step": 61
681
+ },
682
+ {
683
+ "completion_length": 744.0248603820801,
684
+ "epoch": 0.6941917424772568,
685
+ "grad_norm": 7.634659767150879,
686
+ "learning_rate": 3e-06,
687
+ "loss": 0.0,
688
+ "reward": 0.4336734553799033,
689
+ "reward_std": 0.13652257318608463,
690
+ "rewards/accuracy_reward": 0.4336734553799033,
691
+ "step": 62
692
+ },
693
+ {
694
+ "completion_length": 748.6332778930664,
695
+ "epoch": 0.7053883834849545,
696
+ "grad_norm": 5.460710525512695,
697
+ "learning_rate": 3e-06,
698
+ "loss": 0.0,
699
+ "reward": 0.45854590460658073,
700
+ "reward_std": 0.10201446153223515,
701
+ "rewards/accuracy_reward": 0.45854590460658073,
702
+ "step": 63
703
+ },
704
+ {
705
+ "completion_length": 766.7691230773926,
706
+ "epoch": 0.7165850244926522,
707
+ "grad_norm": 10.574377059936523,
708
+ "learning_rate": 3e-06,
709
+ "loss": 0.0,
710
+ "reward": 0.43558672722429037,
711
+ "reward_std": 0.11734448280185461,
712
+ "rewards/accuracy_reward": 0.43558672722429037,
713
+ "step": 64
714
+ },
715
+ {
716
+ "completion_length": 774.1874847412109,
717
+ "epoch": 0.72778166550035,
718
+ "grad_norm": 13.465957641601562,
719
+ "learning_rate": 3e-06,
720
+ "loss": 0.0,
721
+ "reward": 0.4088010136038065,
722
+ "reward_std": 0.1347600498702377,
723
+ "rewards/accuracy_reward": 0.4088010136038065,
724
+ "step": 65
725
+ },
726
+ {
727
+ "completion_length": 767.0720520019531,
728
+ "epoch": 0.7389783065080476,
729
+ "grad_norm": 18.965850830078125,
730
+ "learning_rate": 3e-06,
731
+ "loss": 0.0,
732
+ "reward": 0.3392857080325484,
733
+ "reward_std": 0.10657906858250499,
734
+ "rewards/accuracy_reward": 0.3392857080325484,
735
+ "step": 66
736
+ },
737
+ {
738
+ "completion_length": 743.1543273925781,
739
+ "epoch": 0.7501749475157453,
740
+ "grad_norm": 4.266128063201904,
741
+ "learning_rate": 3e-06,
742
+ "loss": 0.0,
743
+ "reward": 0.4547193758189678,
744
+ "reward_std": 0.14951107138767838,
745
+ "rewards/accuracy_reward": 0.4547193758189678,
746
+ "step": 67
747
+ },
748
+ {
749
+ "completion_length": 746.9189910888672,
750
+ "epoch": 0.761371588523443,
751
+ "grad_norm": 7.374969959259033,
752
+ "learning_rate": 3e-06,
753
+ "loss": 0.0,
754
+ "reward": 0.43048468325287104,
755
+ "reward_std": 0.13727903924882412,
756
+ "rewards/accuracy_reward": 0.43048468325287104,
757
+ "step": 68
758
+ },
759
+ {
760
+ "completion_length": 772.3635101318359,
761
+ "epoch": 0.7725682295311407,
762
+ "grad_norm": 2.557593822479248,
763
+ "learning_rate": 3e-06,
764
+ "loss": 0.0,
765
+ "reward": 0.4036989789456129,
766
+ "reward_std": 0.12583233416080475,
767
+ "rewards/accuracy_reward": 0.4036989789456129,
768
+ "step": 69
769
+ },
770
+ {
771
+ "completion_length": 725.642204284668,
772
+ "epoch": 0.7837648705388384,
773
+ "grad_norm": 2.71532940864563,
774
+ "learning_rate": 3e-06,
775
+ "loss": 0.0,
776
+ "reward": 0.45854590460658073,
777
+ "reward_std": 0.13771890476346016,
778
+ "rewards/accuracy_reward": 0.45854590460658073,
779
+ "step": 70
780
+ },
781
+ {
782
+ "completion_length": 762.9929695129395,
783
+ "epoch": 0.794961511546536,
784
+ "grad_norm": 6.598220348358154,
785
+ "learning_rate": 3e-06,
786
+ "loss": 0.0,
787
+ "reward": 0.38392856158316135,
788
+ "reward_std": 0.1016802228987217,
789
+ "rewards/accuracy_reward": 0.38392856158316135,
790
+ "step": 71
791
+ },
792
+ {
793
+ "completion_length": 734.3813591003418,
794
+ "epoch": 0.8061581525542337,
795
+ "grad_norm": 4.22649621963501,
796
+ "learning_rate": 3e-06,
797
+ "loss": 0.0,
798
+ "reward": 0.4272959092631936,
799
+ "reward_std": 0.09739230386912823,
800
+ "rewards/accuracy_reward": 0.4272959092631936,
801
+ "step": 72
802
+ },
803
+ {
804
+ "completion_length": 756.7136306762695,
805
+ "epoch": 0.8173547935619314,
806
+ "grad_norm": 5.3303704261779785,
807
+ "learning_rate": 3e-06,
808
+ "loss": 0.0,
809
+ "reward": 0.4713010126724839,
810
+ "reward_std": 0.13973407400771976,
811
+ "rewards/accuracy_reward": 0.4713010126724839,
812
+ "step": 73
813
+ },
814
+ {
815
+ "completion_length": 764.8596725463867,
816
+ "epoch": 0.8285514345696291,
817
+ "grad_norm": 4.296087265014648,
818
+ "learning_rate": 3e-06,
819
+ "loss": 0.0,
820
+ "reward": 0.37436223961412907,
821
+ "reward_std": 0.1403882629238069,
822
+ "rewards/accuracy_reward": 0.37436223961412907,
823
+ "step": 74
824
+ },
825
+ {
826
+ "completion_length": 703.3316268920898,
827
+ "epoch": 0.8397480755773268,
828
+ "grad_norm": 6.208092212677002,
829
+ "learning_rate": 3e-06,
830
+ "loss": 0.0,
831
+ "reward": 0.4279336668550968,
832
+ "reward_std": 0.09254459687508643,
833
+ "rewards/accuracy_reward": 0.4279336668550968,
834
+ "step": 75
835
+ },
836
+ {
837
+ "completion_length": 816.643482208252,
838
+ "epoch": 0.8509447165850245,
839
+ "grad_norm": 5.470515727996826,
840
+ "learning_rate": 3e-06,
841
+ "loss": 0.0,
842
+ "reward": 0.4081632560119033,
843
+ "reward_std": 0.12125490978360176,
844
+ "rewards/accuracy_reward": 0.4081632560119033,
845
+ "step": 76
846
+ },
847
+ {
848
+ "completion_length": 741.5395240783691,
849
+ "epoch": 0.8621413575927221,
850
+ "grad_norm": 7.999130725860596,
851
+ "learning_rate": 3e-06,
852
+ "loss": 0.0,
853
+ "reward": 0.4687499925494194,
854
+ "reward_std": 0.12569960486143827,
855
+ "rewards/accuracy_reward": 0.4687499925494194,
856
+ "step": 77
857
+ },
858
+ {
859
+ "completion_length": 758.1237106323242,
860
+ "epoch": 0.8733379986004198,
861
+ "grad_norm": 14.48597526550293,
862
+ "learning_rate": 3e-06,
863
+ "loss": 0.0,
864
+ "reward": 0.3903061128221452,
865
+ "reward_std": 0.1084871394559741,
866
+ "rewards/accuracy_reward": 0.3903061128221452,
867
+ "step": 78
868
+ },
869
+ {
870
+ "completion_length": 761.9495964050293,
871
+ "epoch": 0.8845346396081175,
872
+ "grad_norm": 9.992022514343262,
873
+ "learning_rate": 3e-06,
874
+ "loss": 0.0,
875
+ "reward": 0.3998724417760968,
876
+ "reward_std": 0.10686216223984957,
877
+ "rewards/accuracy_reward": 0.3998724417760968,
878
+ "step": 79
879
+ },
880
+ {
881
+ "completion_length": 755.2149085998535,
882
+ "epoch": 0.8957312806158153,
883
+ "grad_norm": 1.8447043895721436,
884
+ "learning_rate": 3e-06,
885
+ "loss": 0.0,
886
+ "reward": 0.422193868085742,
887
+ "reward_std": 0.12513341289013624,
888
+ "rewards/accuracy_reward": 0.422193868085742,
889
+ "step": 80
890
+ },
891
+ {
892
+ "completion_length": 787.5254936218262,
893
+ "epoch": 0.906927921623513,
894
+ "grad_norm": 2.829308271408081,
895
+ "learning_rate": 3e-06,
896
+ "loss": 0.0,
897
+ "reward": 0.45408162102103233,
898
+ "reward_std": 0.11606655921787024,
899
+ "rewards/accuracy_reward": 0.45408162102103233,
900
+ "step": 81
901
+ },
902
+ {
903
+ "completion_length": 750.6084022521973,
904
+ "epoch": 0.9181245626312107,
905
+ "grad_norm": 9.926461219787598,
906
+ "learning_rate": 3e-06,
907
+ "loss": 0.0,
908
+ "reward": 0.41709183249622583,
909
+ "reward_std": 0.11887505534105003,
910
+ "rewards/accuracy_reward": 0.41709183249622583,
911
+ "step": 82
912
+ },
913
+ {
914
+ "completion_length": 791.3246002197266,
915
+ "epoch": 0.9293212036389084,
916
+ "grad_norm": 8.353261947631836,
917
+ "learning_rate": 3e-06,
918
+ "loss": 0.0,
919
+ "reward": 0.37882652413100004,
920
+ "reward_std": 0.0963351079262793,
921
+ "rewards/accuracy_reward": 0.37882652413100004,
922
+ "step": 83
923
+ },
924
+ {
925
+ "completion_length": 731.2653007507324,
926
+ "epoch": 0.940517844646606,
927
+ "grad_norm": 54.08208465576172,
928
+ "learning_rate": 3e-06,
929
+ "loss": 0.0,
930
+ "reward": 0.415816318243742,
931
+ "reward_std": 0.14536869549192488,
932
+ "rewards/accuracy_reward": 0.415816318243742,
933
+ "step": 84
934
+ },
935
+ {
936
+ "completion_length": 743.2423324584961,
937
+ "epoch": 0.9517144856543037,
938
+ "grad_norm": 3.901226043701172,
939
+ "learning_rate": 3e-06,
940
+ "loss": 0.0,
941
+ "reward": 0.4451530482620001,
942
+ "reward_std": 0.1309119921643287,
943
+ "rewards/accuracy_reward": 0.4451530482620001,
944
+ "step": 85
945
+ },
946
+ {
947
+ "completion_length": 751.2391338348389,
948
+ "epoch": 0.9629111266620014,
949
+ "grad_norm": 5.942202568054199,
950
+ "learning_rate": 3e-06,
951
+ "loss": 0.0,
952
+ "reward": 0.43367346189916134,
953
+ "reward_std": 0.10790172568522394,
954
+ "rewards/accuracy_reward": 0.43367346189916134,
955
+ "step": 86
956
+ },
957
+ {
958
+ "completion_length": 719.3335266113281,
959
+ "epoch": 0.9741077676696991,
960
+ "grad_norm": 5.666225433349609,
961
+ "learning_rate": 3e-06,
962
+ "loss": 0.0,
963
+ "reward": 0.44451529532670975,
964
+ "reward_std": 0.11002893466502428,
965
+ "rewards/accuracy_reward": 0.44451529532670975,
966
+ "step": 87
967
+ },
968
+ {
969
+ "completion_length": 752.9968070983887,
970
+ "epoch": 0.9853044086773968,
971
+ "grad_norm": 10.701108932495117,
972
+ "learning_rate": 3e-06,
973
+ "loss": 0.0,
974
+ "reward": 0.411352033726871,
975
+ "reward_std": 0.11254792334511876,
976
+ "rewards/accuracy_reward": 0.411352033726871,
977
+ "step": 88
978
+ },
979
+ {
980
+ "completion_length": 763.3092956542969,
981
+ "epoch": 0.9965010496850945,
982
+ "grad_norm": 7.832119941711426,
983
+ "learning_rate": 3e-06,
984
+ "loss": 0.0,
985
+ "reward": 0.40051019471138716,
986
+ "reward_std": 0.10468381433747709,
987
+ "rewards/accuracy_reward": 0.40051019471138716,
988
+ "step": 89
989
+ },
990
+ {
991
+ "epoch": 0.9965010496850945,
992
+ "step": 89,
993
+ "total_flos": 0.0,
994
+ "train_loss": 2.155859272374791e-08,
995
+ "train_runtime": 56373.7111,
996
+ "train_samples_per_second": 0.355,
997
+ "train_steps_per_second": 0.002
998
+ }
999
+ ],
1000
+ "logging_steps": 1,
1001
+ "max_steps": 89,
1002
+ "num_input_tokens_seen": 0,
1003
+ "num_train_epochs": 1,
1004
+ "save_steps": 20,
1005
+ "stateful_callbacks": {
1006
+ "TrainerControl": {
1007
+ "args": {
1008
+ "should_epoch_stop": false,
1009
+ "should_evaluate": false,
1010
+ "should_log": false,
1011
+ "should_save": true,
1012
+ "should_training_stop": true
1013
+ },
1014
+ "attributes": {}
1015
+ }
1016
+ },
1017
+ "total_flos": 0.0,
1018
+ "train_batch_size": 2,
1019
+ "trial_name": null,
1020
+ "trial_params": null
1021
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9332720c30375586287c0cec1c290df533d83128e0eaf2cdc56b125c84d68f84
3
+ size 7544
vocab.json ADDED
The diff for this file is too large to render. See raw diff