HaichuanWang commited on
Commit
d64cc48
·
verified ·
1 Parent(s): d371189

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B-Simple-RL
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B-Simple-RL
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="HaichuanWang/Qwen-2.5-7B-Simple-RL", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wanghaichuan/huggingface/runs/eovbfgxo)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 1.2402063848306162,
4
+ "train_runtime": 35030.8408,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.214,
7
+ "train_steps_per_second": 0.013
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e69be4d87367acb672fc350b2f7046dd9e2cf9ec618cc0dec52498909317321
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3458aa7ffac11ae8ca5246d72a62a9f8ec01bf58697b62c79c6a7768d1339b2b
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5643906fe24b7997e2b7526af64e1c67d031a5c00322502a2da8baaf08965da6
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d61362ab237cfd9e3b5983d8f2fca8919a1eda6fd17ca3a62e568b5a98e6542
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 1.2402063848306162,
4
+ "train_runtime": 35030.8408,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.214,
7
+ "train_steps_per_second": 0.013
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 100,
6
+ "global_step": 468,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 629.0333465576172,
13
+ "epoch": 0.010666666666666666,
14
+ "grad_norm": 0.6769814278795893,
15
+ "kl": 9.946823120117187e-05,
16
+ "learning_rate": 3.1914893617021275e-07,
17
+ "loss": 0.0,
18
+ "reward": 0.625000013411045,
19
+ "reward_std": 0.2814582511782646,
20
+ "rewards/accuracy_reward": 0.625000013411045,
21
+ "rewards/format_reward": 0.0,
22
+ "step": 5
23
+ },
24
+ {
25
+ "completion_length": 555.6875137329101,
26
+ "epoch": 0.021333333333333333,
27
+ "grad_norm": 1.9840891212418084,
28
+ "kl": 0.0014047443866729737,
29
+ "learning_rate": 6.382978723404255e-07,
30
+ "loss": 0.0001,
31
+ "reward": 0.6833333499729634,
32
+ "reward_std": 0.2381569817662239,
33
+ "rewards/accuracy_reward": 0.6833333499729634,
34
+ "rewards/format_reward": 0.0,
35
+ "step": 10
36
+ },
37
+ {
38
+ "completion_length": 596.6166839599609,
39
+ "epoch": 0.032,
40
+ "grad_norm": 0.32100565406672044,
41
+ "kl": 0.0005277872085571289,
42
+ "learning_rate": 9.574468085106384e-07,
43
+ "loss": 0.0,
44
+ "reward": 0.6541666820645332,
45
+ "reward_std": 0.2742413729429245,
46
+ "rewards/accuracy_reward": 0.6541666820645332,
47
+ "rewards/format_reward": 0.0,
48
+ "step": 15
49
+ },
50
+ {
51
+ "completion_length": 622.8041839599609,
52
+ "epoch": 0.042666666666666665,
53
+ "grad_norm": 2.7595418706029604,
54
+ "kl": 0.0008854150772094726,
55
+ "learning_rate": 1.276595744680851e-06,
56
+ "loss": 0.0,
57
+ "reward": 0.6791666865348815,
58
+ "reward_std": 0.2670244947075844,
59
+ "rewards/accuracy_reward": 0.6750000178813934,
60
+ "rewards/format_reward": 0.00416666679084301,
61
+ "step": 20
62
+ },
63
+ {
64
+ "completion_length": 632.7000167846679,
65
+ "epoch": 0.05333333333333334,
66
+ "grad_norm": 0.4465988016263813,
67
+ "kl": 0.0010046005249023438,
68
+ "learning_rate": 1.5957446808510639e-06,
69
+ "loss": 0.0,
70
+ "reward": 0.6750000156462193,
71
+ "reward_std": 0.20207259058952332,
72
+ "rewards/accuracy_reward": 0.6750000156462193,
73
+ "rewards/format_reward": 0.0,
74
+ "step": 25
75
+ },
76
+ {
77
+ "completion_length": 631.6250205993653,
78
+ "epoch": 0.064,
79
+ "grad_norm": 5.122527862000083,
80
+ "kl": 0.002363252639770508,
81
+ "learning_rate": 1.9148936170212767e-06,
82
+ "loss": 0.0001,
83
+ "reward": 0.7041666809469461,
84
+ "reward_std": 0.2381569817662239,
85
+ "rewards/accuracy_reward": 0.7041666809469461,
86
+ "rewards/format_reward": 0.0,
87
+ "step": 30
88
+ },
89
+ {
90
+ "completion_length": 617.3833492279052,
91
+ "epoch": 0.07466666666666667,
92
+ "grad_norm": 0.4565019319043069,
93
+ "kl": 0.0020374774932861326,
94
+ "learning_rate": 2.2340425531914894e-06,
95
+ "loss": 0.0001,
96
+ "reward": 0.658333345502615,
97
+ "reward_std": 0.1587713211774826,
98
+ "rewards/accuracy_reward": 0.658333345502615,
99
+ "rewards/format_reward": 0.0,
100
+ "step": 35
101
+ },
102
+ {
103
+ "completion_length": 605.6125198364258,
104
+ "epoch": 0.08533333333333333,
105
+ "grad_norm": 0.1538327867321423,
106
+ "kl": 0.007851552963256837,
107
+ "learning_rate": 2.553191489361702e-06,
108
+ "loss": 0.0003,
109
+ "reward": 0.7458333469927311,
110
+ "reward_std": 0.16598819941282272,
111
+ "rewards/accuracy_reward": 0.7458333469927311,
112
+ "rewards/format_reward": 0.0,
113
+ "step": 40
114
+ },
115
+ {
116
+ "completion_length": 577.2958511352539,
117
+ "epoch": 0.096,
118
+ "grad_norm": 0.37253452177444696,
119
+ "kl": 0.021607685089111327,
120
+ "learning_rate": 2.872340425531915e-06,
121
+ "loss": 0.0009,
122
+ "reward": 0.75416667945683,
123
+ "reward_std": 0.14433756470680237,
124
+ "rewards/accuracy_reward": 0.75416667945683,
125
+ "rewards/format_reward": 0.0,
126
+ "step": 45
127
+ },
128
+ {
129
+ "completion_length": 642.6583526611328,
130
+ "epoch": 0.10666666666666667,
131
+ "grad_norm": 0.1770926163615656,
132
+ "kl": 0.0023632049560546875,
133
+ "learning_rate": 2.9996241442585123e-06,
134
+ "loss": 0.0001,
135
+ "reward": 0.7375000134110451,
136
+ "reward_std": 0.16598819941282272,
137
+ "rewards/accuracy_reward": 0.7375000134110451,
138
+ "rewards/format_reward": 0.0,
139
+ "step": 50
140
+ },
141
+ {
142
+ "completion_length": 618.7875183105468,
143
+ "epoch": 0.11733333333333333,
144
+ "grad_norm": 1.1185074340159897,
145
+ "kl": 0.0026407241821289062,
146
+ "learning_rate": 2.9973279301399446e-06,
147
+ "loss": 0.0001,
148
+ "reward": 0.7083333477377891,
149
+ "reward_std": 0.18042195588350296,
150
+ "rewards/accuracy_reward": 0.7083333477377891,
151
+ "rewards/format_reward": 0.0,
152
+ "step": 55
153
+ },
154
+ {
155
+ "completion_length": 586.7333518981934,
156
+ "epoch": 0.128,
157
+ "grad_norm": 0.7174325392644639,
158
+ "kl": 0.003997516632080078,
159
+ "learning_rate": 2.992947502998804e-06,
160
+ "loss": 0.0002,
161
+ "reward": 0.7500000119209289,
162
+ "reward_std": 0.1154700517654419,
163
+ "rewards/accuracy_reward": 0.7500000119209289,
164
+ "rewards/format_reward": 0.0,
165
+ "step": 60
166
+ },
167
+ {
168
+ "completion_length": 622.9291847229003,
169
+ "epoch": 0.13866666666666666,
170
+ "grad_norm": 0.670903073904803,
171
+ "kl": 0.00260772705078125,
172
+ "learning_rate": 2.9864889601923268e-06,
173
+ "loss": 0.0001,
174
+ "reward": 0.691666680201888,
175
+ "reward_std": 0.21650634706020355,
176
+ "rewards/accuracy_reward": 0.691666680201888,
177
+ "rewards/format_reward": 0.0,
178
+ "step": 65
179
+ },
180
+ {
181
+ "completion_length": 549.3833484649658,
182
+ "epoch": 0.14933333333333335,
183
+ "grad_norm": 0.4088284284161271,
184
+ "kl": 0.004892921447753907,
185
+ "learning_rate": 2.977961291721137e-06,
186
+ "loss": 0.0002,
187
+ "reward": 0.8541666768491268,
188
+ "reward_std": 0.12268693000078201,
189
+ "rewards/accuracy_reward": 0.8541666768491268,
190
+ "rewards/format_reward": 0.0,
191
+ "step": 70
192
+ },
193
+ {
194
+ "completion_length": 607.4750160217285,
195
+ "epoch": 0.16,
196
+ "grad_norm": 0.38437819950891683,
197
+ "kl": 0.002490520477294922,
198
+ "learning_rate": 2.9673763677155655e-06,
199
+ "loss": 0.0001,
200
+ "reward": 0.7416666783392429,
201
+ "reward_std": 0.1587713211774826,
202
+ "rewards/accuracy_reward": 0.7416666783392429,
203
+ "rewards/format_reward": 0.0,
204
+ "step": 75
205
+ },
206
+ {
207
+ "completion_length": 606.7250198364258,
208
+ "epoch": 0.17066666666666666,
209
+ "grad_norm": 0.427244505552826,
210
+ "kl": 0.0034360885620117188,
211
+ "learning_rate": 2.9547489219129666e-06,
212
+ "loss": 0.0001,
213
+ "reward": 0.7416666761040688,
214
+ "reward_std": 0.17320507764816284,
215
+ "rewards/accuracy_reward": 0.7416666761040688,
216
+ "rewards/format_reward": 0.0,
217
+ "step": 80
218
+ },
219
+ {
220
+ "completion_length": 597.8541831970215,
221
+ "epoch": 0.18133333333333335,
222
+ "grad_norm": 0.2807801163545959,
223
+ "kl": 0.0037883758544921876,
224
+ "learning_rate": 2.9400965311490175e-06,
225
+ "loss": 0.0002,
226
+ "reward": 0.75416667945683,
227
+ "reward_std": 0.16598819941282272,
228
+ "rewards/accuracy_reward": 0.75416667945683,
229
+ "rewards/format_reward": 0.0,
230
+ "step": 85
231
+ },
232
+ {
233
+ "completion_length": 596.2541862487793,
234
+ "epoch": 0.192,
235
+ "grad_norm": 0.521374734305685,
236
+ "kl": 0.0034576416015625,
237
+ "learning_rate": 2.9234395908915565e-06,
238
+ "loss": 0.0001,
239
+ "reward": 0.7833333477377892,
240
+ "reward_std": 0.18042195588350296,
241
+ "rewards/accuracy_reward": 0.7833333477377892,
242
+ "rewards/format_reward": 0.0,
243
+ "step": 90
244
+ },
245
+ {
246
+ "completion_length": 571.3958503723145,
247
+ "epoch": 0.20266666666666666,
248
+ "grad_norm": 0.3433615148143651,
249
+ "kl": 0.003693962097167969,
250
+ "learning_rate": 2.904801286851009e-06,
251
+ "loss": 0.0001,
252
+ "reward": 0.758333345502615,
253
+ "reward_std": 0.18042195588350296,
254
+ "rewards/accuracy_reward": 0.758333345502615,
255
+ "rewards/format_reward": 0.0,
256
+ "step": 95
257
+ },
258
+ {
259
+ "completion_length": 540.612516784668,
260
+ "epoch": 0.21333333333333335,
261
+ "grad_norm": 1.316659347652175,
262
+ "kl": 0.003926467895507812,
263
+ "learning_rate": 2.884207562706925e-06,
264
+ "loss": 0.0002,
265
+ "reward": 0.8166666753590107,
266
+ "reward_std": 0.13712068647146225,
267
+ "rewards/accuracy_reward": 0.8166666753590107,
268
+ "rewards/format_reward": 0.0,
269
+ "step": 100
270
+ },
271
+ {
272
+ "epoch": 0.21333333333333335,
273
+ "eval_completion_length": 584.8229370117188,
274
+ "eval_kl": 0.0649594835415008,
275
+ "eval_loss": 0.0026084992568939924,
276
+ "eval_reward": 0.6781449270476202,
277
+ "eval_reward_std": 0.17168815557364445,
278
+ "eval_rewards/accuracy_reward": 0.6781449270476202,
279
+ "eval_rewards/format_reward": 0.0,
280
+ "eval_runtime": 2224.3049,
281
+ "eval_samples_per_second": 2.248,
282
+ "eval_steps_per_second": 0.024,
283
+ "step": 100
284
+ },
285
+ {
286
+ "completion_length": 555.7166831970214,
287
+ "epoch": 0.224,
288
+ "grad_norm": 0.27423172301140597,
289
+ "kl": 0.004434013366699218,
290
+ "learning_rate": 2.8616870839955444e-06,
291
+ "loss": 0.0002,
292
+ "reward": 0.7791666761040688,
293
+ "reward_std": 0.12268693000078201,
294
+ "rewards/accuracy_reward": 0.7791666761040688,
295
+ "rewards/format_reward": 0.0,
296
+ "step": 105
297
+ },
298
+ {
299
+ "completion_length": 559.5791831970215,
300
+ "epoch": 0.23466666666666666,
301
+ "grad_norm": 0.31053268918266963,
302
+ "kl": 0.0049915313720703125,
303
+ "learning_rate": 2.837271198208662e-06,
304
+ "loss": 0.0002,
305
+ "reward": 0.779166679829359,
306
+ "reward_std": 0.12990380823612213,
307
+ "rewards/accuracy_reward": 0.779166679829359,
308
+ "rewards/format_reward": 0.0,
309
+ "step": 110
310
+ },
311
+ {
312
+ "completion_length": 572.1333473205566,
313
+ "epoch": 0.24533333333333332,
314
+ "grad_norm": 0.5350039478758858,
315
+ "kl": 0.005301475524902344,
316
+ "learning_rate": 2.8109938911593322e-06,
317
+ "loss": 0.0002,
318
+ "reward": 0.8041666813194752,
319
+ "reward_std": 0.14433756470680237,
320
+ "rewards/accuracy_reward": 0.8041666813194752,
321
+ "rewards/format_reward": 0.0,
322
+ "step": 115
323
+ },
324
+ {
325
+ "completion_length": 582.1333488464355,
326
+ "epoch": 0.256,
327
+ "grad_norm": 0.2859156946575482,
328
+ "kl": 2905.6047693252563,
329
+ "learning_rate": 2.7828917396751474e-06,
330
+ "loss": 116.0331,
331
+ "reward": 0.7208333447575569,
332
+ "reward_std": 0.1587713211774826,
333
+ "rewards/accuracy_reward": 0.7208333447575569,
334
+ "rewards/format_reward": 0.0,
335
+ "step": 120
336
+ },
337
+ {
338
+ "completion_length": 530.0416824340821,
339
+ "epoch": 0.26666666666666666,
340
+ "grad_norm": 1.1177982976359848,
341
+ "kl": 0.004655075073242187,
342
+ "learning_rate": 2.753003860684943e-06,
343
+ "loss": 0.0002,
344
+ "reward": 0.8416666783392429,
345
+ "reward_std": 0.12268693000078201,
346
+ "rewards/accuracy_reward": 0.8416666783392429,
347
+ "rewards/format_reward": 0.0,
348
+ "step": 125
349
+ },
350
+ {
351
+ "completion_length": 557.0750175476074,
352
+ "epoch": 0.2773333333333333,
353
+ "grad_norm": 0.4585614836700422,
354
+ "kl": 0.0064525604248046875,
355
+ "learning_rate": 2.721371856769793e-06,
356
+ "loss": 0.0003,
357
+ "reward": 0.829166679084301,
358
+ "reward_std": 0.13712068647146225,
359
+ "rewards/accuracy_reward": 0.829166679084301,
360
+ "rewards/format_reward": 0.0,
361
+ "step": 130
362
+ },
363
+ {
364
+ "completion_length": 587.7958473205566,
365
+ "epoch": 0.288,
366
+ "grad_norm": 0.0950533723109889,
367
+ "kl": 0.005008697509765625,
368
+ "learning_rate": 2.688039758254093e-06,
369
+ "loss": 0.0002,
370
+ "reward": 0.7541666768491269,
371
+ "reward_std": 0.13712068647146225,
372
+ "rewards/accuracy_reward": 0.7541666768491269,
373
+ "rewards/format_reward": 0.0,
374
+ "step": 135
375
+ },
376
+ {
377
+ "completion_length": 543.9125160217285,
378
+ "epoch": 0.2986666666666667,
379
+ "grad_norm": 0.6441875290120029,
380
+ "kl": 0.005208587646484375,
381
+ "learning_rate": 2.65305396191733e-06,
382
+ "loss": 0.0002,
383
+ "reward": 0.816666679084301,
384
+ "reward_std": 0.13712068647146225,
385
+ "rewards/accuracy_reward": 0.816666679084301,
386
+ "rewards/format_reward": 0.0,
387
+ "step": 140
388
+ },
389
+ {
390
+ "completion_length": 569.7666854858398,
391
+ "epoch": 0.30933333333333335,
392
+ "grad_norm": 0.5652154440314774,
393
+ "kl": 0.006348609924316406,
394
+ "learning_rate": 2.61646316641186e-06,
395
+ "loss": 0.0003,
396
+ "reward": 0.7750000104308128,
397
+ "reward_std": 0.14433756470680237,
398
+ "rewards/accuracy_reward": 0.7750000104308128,
399
+ "rewards/format_reward": 0.0,
400
+ "step": 145
401
+ },
402
+ {
403
+ "completion_length": 574.3875183105469,
404
+ "epoch": 0.32,
405
+ "grad_norm": 0.23645532092478114,
406
+ "kl": 0.00558013916015625,
407
+ "learning_rate": 2.5783183044765715e-06,
408
+ "loss": 0.0002,
409
+ "reward": 0.7708333481103182,
410
+ "reward_std": 0.16598819941282272,
411
+ "rewards/accuracy_reward": 0.7708333481103182,
412
+ "rewards/format_reward": 0.0,
413
+ "step": 150
414
+ },
415
+ {
416
+ "completion_length": 527.1708511352539,
417
+ "epoch": 0.33066666666666666,
418
+ "grad_norm": 0.34192011002352146,
419
+ "kl": 0.007277297973632813,
420
+ "learning_rate": 2.5386724720408135e-06,
421
+ "loss": 0.0003,
422
+ "reward": 0.8000000149011612,
423
+ "reward_std": 0.17320507764816284,
424
+ "rewards/accuracy_reward": 0.8000000149011612,
425
+ "rewards/format_reward": 0.0,
426
+ "step": 155
427
+ },
428
+ {
429
+ "completion_length": 498.82918281555175,
430
+ "epoch": 0.3413333333333333,
431
+ "grad_norm": 0.40065027769948436,
432
+ "kl": 0.00552520751953125,
433
+ "learning_rate": 2.49758085431725e-06,
434
+ "loss": 0.0002,
435
+ "reward": 0.8000000093132258,
436
+ "reward_std": 0.1154700517654419,
437
+ "rewards/accuracy_reward": 0.8000000093132258,
438
+ "rewards/format_reward": 0.0,
439
+ "step": 160
440
+ },
441
+ {
442
+ "completion_length": 578.9625190734863,
443
+ "epoch": 0.352,
444
+ "grad_norm": 0.38287823891545164,
445
+ "kl": 0.004776382446289062,
446
+ "learning_rate": 2.455100648986533e-06,
447
+ "loss": 0.0002,
448
+ "reward": 0.7416666746139526,
449
+ "reward_std": 0.14433756470680237,
450
+ "rewards/accuracy_reward": 0.7416666746139526,
451
+ "rewards/format_reward": 0.0,
452
+ "step": 165
453
+ },
454
+ {
455
+ "completion_length": 523.1041854858398,
456
+ "epoch": 0.3626666666666667,
457
+ "grad_norm": 0.284445909761847,
458
+ "kl": 0.013115310668945312,
459
+ "learning_rate": 2.4112909865807053e-06,
460
+ "loss": 0.0005,
461
+ "reward": 0.8583333406597375,
462
+ "reward_std": 0.10103629529476166,
463
+ "rewards/accuracy_reward": 0.8583333406597375,
464
+ "rewards/format_reward": 0.0,
465
+ "step": 170
466
+ },
467
+ {
468
+ "completion_length": 570.7833480834961,
469
+ "epoch": 0.37333333333333335,
470
+ "grad_norm": 0.23347186760127464,
471
+ "kl": 0.006616973876953125,
472
+ "learning_rate": 2.366212848176164e-06,
473
+ "loss": 0.0003,
474
+ "reward": 0.8291666753590107,
475
+ "reward_std": 0.12268693000078201,
476
+ "rewards/accuracy_reward": 0.8291666753590107,
477
+ "rewards/format_reward": 0.0,
478
+ "step": 175
479
+ },
480
+ {
481
+ "completion_length": 580.6666816711426,
482
+ "epoch": 0.384,
483
+ "grad_norm": 0.39704873396377327,
484
+ "kl": 0.008529281616210938,
485
+ "learning_rate": 2.319928980510752e-06,
486
+ "loss": 0.0003,
487
+ "reward": 0.770833345502615,
488
+ "reward_std": 0.14433756470680237,
489
+ "rewards/accuracy_reward": 0.770833345502615,
490
+ "rewards/format_reward": 0.0,
491
+ "step": 180
492
+ },
493
+ {
494
+ "completion_length": 585.516682434082,
495
+ "epoch": 0.39466666666666667,
496
+ "grad_norm": 0.9521350378322919,
497
+ "kl": 0.00994873046875,
498
+ "learning_rate": 2.272503808643123e-06,
499
+ "loss": 0.0004,
500
+ "reward": 0.7375000108033418,
501
+ "reward_std": 0.13712068647146225,
502
+ "rewards/accuracy_reward": 0.7375000108033418,
503
+ "rewards/format_reward": 0.0,
504
+ "step": 185
505
+ },
506
+ {
507
+ "completion_length": 580.2583480834961,
508
+ "epoch": 0.4053333333333333,
509
+ "grad_norm": 0.22517264586722138,
510
+ "kl": 0.006447982788085937,
511
+ "learning_rate": 2.2240033462759628e-06,
512
+ "loss": 0.0003,
513
+ "reward": 0.7250000115483999,
514
+ "reward_std": 0.12990380823612213,
515
+ "rewards/accuracy_reward": 0.7250000115483999,
516
+ "rewards/format_reward": 0.0,
517
+ "step": 190
518
+ },
519
+ {
520
+ "completion_length": 526.1250137329101,
521
+ "epoch": 0.416,
522
+ "grad_norm": 0.3639815103811325,
523
+ "kl": 0.010872650146484374,
524
+ "learning_rate": 2.1744951038678905e-06,
525
+ "loss": 0.0004,
526
+ "reward": 0.8041666753590107,
527
+ "reward_std": 0.12990380823612213,
528
+ "rewards/accuracy_reward": 0.8041666753590107,
529
+ "rewards/format_reward": 0.0,
530
+ "step": 195
531
+ },
532
+ {
533
+ "completion_length": 602.2041851043701,
534
+ "epoch": 0.4266666666666667,
535
+ "grad_norm": 0.2467674604552363,
536
+ "kl": 0.007511520385742187,
537
+ "learning_rate": 2.124047994661941e-06,
538
+ "loss": 0.0003,
539
+ "reward": 0.7125000089406968,
540
+ "reward_std": 0.14433756470680237,
541
+ "rewards/accuracy_reward": 0.7125000089406968,
542
+ "rewards/format_reward": 0.0,
543
+ "step": 200
544
+ },
545
+ {
546
+ "epoch": 0.4266666666666667,
547
+ "eval_completion_length": 575.310859242822,
548
+ "eval_kl": 0.007285342854299363,
549
+ "eval_loss": 0.00030118186259642243,
550
+ "eval_reward": 0.6825902547426285,
551
+ "eval_reward_std": 0.16835552112312074,
552
+ "eval_rewards/accuracy_reward": 0.6823248622144104,
553
+ "eval_rewards/format_reward": 0.00026539278922566945,
554
+ "eval_runtime": 2201.1944,
555
+ "eval_samples_per_second": 2.271,
556
+ "eval_steps_per_second": 0.024,
557
+ "step": 200
558
+ },
559
+ {
560
+ "completion_length": 567.8333488464356,
561
+ "epoch": 0.43733333333333335,
562
+ "grad_norm": 0.19466659798874456,
563
+ "kl": 0.006165504455566406,
564
+ "learning_rate": 2.072732238761434e-06,
565
+ "loss": 0.0002,
566
+ "reward": 0.7625000100582838,
567
+ "reward_std": 0.1515544429421425,
568
+ "rewards/accuracy_reward": 0.7625000100582838,
569
+ "rewards/format_reward": 0.0,
570
+ "step": 205
571
+ },
572
+ {
573
+ "completion_length": 597.8791809082031,
574
+ "epoch": 0.448,
575
+ "grad_norm": 0.1973895783664286,
576
+ "kl": 0.00566558837890625,
577
+ "learning_rate": 2.0206192653867536e-06,
578
+ "loss": 0.0002,
579
+ "reward": 0.7875000104308129,
580
+ "reward_std": 0.12990380823612213,
581
+ "rewards/accuracy_reward": 0.7875000104308129,
582
+ "rewards/format_reward": 0.0,
583
+ "step": 210
584
+ },
585
+ {
586
+ "completion_length": 567.9416831970215,
587
+ "epoch": 0.45866666666666667,
588
+ "grad_norm": 0.17114030974558328,
589
+ "kl": 0.0057373046875,
590
+ "learning_rate": 1.967781613449095e-06,
591
+ "loss": 0.0002,
592
+ "reward": 0.7041666761040688,
593
+ "reward_std": 0.12990380823612213,
594
+ "rewards/accuracy_reward": 0.7041666761040688,
595
+ "rewards/format_reward": 0.0,
596
+ "step": 215
597
+ },
598
+ {
599
+ "completion_length": 576.6125190734863,
600
+ "epoch": 0.4693333333333333,
601
+ "grad_norm": 0.15616587500490686,
602
+ "kl": 0.006618499755859375,
603
+ "learning_rate": 1.9142928305795637e-06,
604
+ "loss": 0.0003,
605
+ "reward": 0.7708333447575569,
606
+ "reward_std": 0.16598819941282272,
607
+ "rewards/accuracy_reward": 0.7708333447575569,
608
+ "rewards/format_reward": 0.0,
609
+ "step": 220
610
+ },
611
+ {
612
+ "completion_length": 572.6916816711425,
613
+ "epoch": 0.48,
614
+ "grad_norm": 0.16702488825594472,
615
+ "kl": 0.004993247985839844,
616
+ "learning_rate": 1.8602273707541886e-06,
617
+ "loss": 0.0002,
618
+ "reward": 0.7916666757315397,
619
+ "reward_std": 0.12268693000078201,
620
+ "rewards/accuracy_reward": 0.7916666757315397,
621
+ "rewards/format_reward": 0.0,
622
+ "step": 225
623
+ },
624
+ {
625
+ "completion_length": 579.0583503723144,
626
+ "epoch": 0.49066666666666664,
627
+ "grad_norm": 0.21881388737259078,
628
+ "kl": 0.031103515625,
629
+ "learning_rate": 1.8056604906573418e-06,
630
+ "loss": 0.0012,
631
+ "reward": 0.7750000115483999,
632
+ "reward_std": 0.1587713211774826,
633
+ "rewards/accuracy_reward": 0.7750000115483999,
634
+ "rewards/format_reward": 0.0,
635
+ "step": 230
636
+ },
637
+ {
638
+ "completion_length": 597.841682434082,
639
+ "epoch": 0.5013333333333333,
640
+ "grad_norm": 0.23095788778773238,
641
+ "kl": 0.004894065856933594,
642
+ "learning_rate": 1.7506681449278226e-06,
643
+ "loss": 0.0002,
644
+ "reward": 0.7750000078231096,
645
+ "reward_std": 0.14433756470680237,
646
+ "rewards/accuracy_reward": 0.7750000078231096,
647
+ "rewards/format_reward": 0.0,
648
+ "step": 235
649
+ },
650
+ {
651
+ "completion_length": 618.4500175476074,
652
+ "epoch": 0.512,
653
+ "grad_norm": 0.16218399606161332,
654
+ "kl": 0.004921722412109375,
655
+ "learning_rate": 1.6953268804334257e-06,
656
+ "loss": 0.0002,
657
+ "reward": 0.7208333402872086,
658
+ "reward_std": 0.1154700517654419,
659
+ "rewards/accuracy_reward": 0.7208333402872086,
660
+ "rewards/format_reward": 0.0,
661
+ "step": 240
662
+ },
663
+ {
664
+ "completion_length": 577.145849609375,
665
+ "epoch": 0.5226666666666666,
666
+ "grad_norm": 0.2312126432153185,
667
+ "kl": 0.005503082275390625,
668
+ "learning_rate": 1.6397137297211436e-06,
669
+ "loss": 0.0002,
670
+ "reward": 0.7458333425223828,
671
+ "reward_std": 0.12990380823612213,
672
+ "rewards/accuracy_reward": 0.7458333425223828,
673
+ "rewards/format_reward": 0.0,
674
+ "step": 245
675
+ },
676
+ {
677
+ "completion_length": 535.725016784668,
678
+ "epoch": 0.5333333333333333,
679
+ "grad_norm": 0.8329104997318444,
680
+ "kl": 0.005479049682617187,
681
+ "learning_rate": 1.5839061037913395e-06,
682
+ "loss": 0.0002,
683
+ "reward": 0.7333333425223827,
684
+ "reward_std": 0.12990380823612213,
685
+ "rewards/accuracy_reward": 0.7333333425223827,
686
+ "rewards/format_reward": 0.0,
687
+ "step": 250
688
+ },
689
+ {
690
+ "completion_length": 562.9125198364258,
691
+ "epoch": 0.544,
692
+ "grad_norm": 0.7014962804091782,
693
+ "kl": 0.00579681396484375,
694
+ "learning_rate": 1.527981684345115e-06,
695
+ "loss": 0.0002,
696
+ "reward": 0.7541666772216559,
697
+ "reward_std": 0.14433756470680237,
698
+ "rewards/accuracy_reward": 0.7541666772216559,
699
+ "rewards/format_reward": 0.0,
700
+ "step": 255
701
+ },
702
+ {
703
+ "completion_length": 549.2666793823242,
704
+ "epoch": 0.5546666666666666,
705
+ "grad_norm": 0.14628604121619648,
706
+ "kl": 0.005747222900390625,
707
+ "learning_rate": 1.4720183156548855e-06,
708
+ "loss": 0.0002,
709
+ "reward": 0.7916666757315397,
710
+ "reward_std": 0.12268693000078201,
711
+ "rewards/accuracy_reward": 0.7916666757315397,
712
+ "rewards/format_reward": 0.0,
713
+ "step": 260
714
+ },
715
+ {
716
+ "completion_length": 549.0625137329101,
717
+ "epoch": 0.5653333333333334,
718
+ "grad_norm": 0.22137684029876195,
719
+ "kl": 0.006251907348632813,
720
+ "learning_rate": 1.4160938962086612e-06,
721
+ "loss": 0.0002,
722
+ "reward": 0.7666666731238365,
723
+ "reward_std": 0.08660253882408142,
724
+ "rewards/accuracy_reward": 0.7666666731238365,
725
+ "rewards/format_reward": 0.0,
726
+ "step": 265
727
+ },
728
+ {
729
+ "completion_length": 526.2583480834961,
730
+ "epoch": 0.576,
731
+ "grad_norm": 0.6919808405276313,
732
+ "kl": 0.004993057250976563,
733
+ "learning_rate": 1.3602862702788567e-06,
734
+ "loss": 0.0002,
735
+ "reward": 0.7958333443850278,
736
+ "reward_std": 0.12990380823612213,
737
+ "rewards/accuracy_reward": 0.7958333443850278,
738
+ "rewards/format_reward": 0.0,
739
+ "step": 270
740
+ },
741
+ {
742
+ "completion_length": 623.1583526611328,
743
+ "epoch": 0.5866666666666667,
744
+ "grad_norm": 0.4980813393645608,
745
+ "kl": 0.004901885986328125,
746
+ "learning_rate": 1.3046731195665748e-06,
747
+ "loss": 0.0002,
748
+ "reward": 0.700000013038516,
749
+ "reward_std": 0.17320507764816284,
750
+ "rewards/accuracy_reward": 0.700000013038516,
751
+ "rewards/format_reward": 0.0,
752
+ "step": 275
753
+ },
754
+ {
755
+ "completion_length": 582.2666862487793,
756
+ "epoch": 0.5973333333333334,
757
+ "grad_norm": 0.15409228399304845,
758
+ "kl": 0.004350852966308594,
759
+ "learning_rate": 1.2493318550721775e-06,
760
+ "loss": 0.0002,
761
+ "reward": 0.762500011920929,
762
+ "reward_std": 0.12990380823612213,
763
+ "rewards/accuracy_reward": 0.762500011920929,
764
+ "rewards/format_reward": 0.0,
765
+ "step": 280
766
+ },
767
+ {
768
+ "completion_length": 535.845851135254,
769
+ "epoch": 0.608,
770
+ "grad_norm": 0.27378549806354485,
771
+ "kl": 0.006243515014648438,
772
+ "learning_rate": 1.1943395093426585e-06,
773
+ "loss": 0.0002,
774
+ "reward": 0.7708333440124988,
775
+ "reward_std": 0.12268693000078201,
776
+ "rewards/accuracy_reward": 0.7708333440124988,
777
+ "rewards/format_reward": 0.0,
778
+ "step": 285
779
+ },
780
+ {
781
+ "completion_length": 578.8583518981934,
782
+ "epoch": 0.6186666666666667,
783
+ "grad_norm": 0.24016865067136048,
784
+ "kl": 0.005126190185546875,
785
+ "learning_rate": 1.1397726292458115e-06,
786
+ "loss": 0.0002,
787
+ "reward": 0.7458333447575569,
788
+ "reward_std": 0.14433756470680237,
789
+ "rewards/accuracy_reward": 0.7458333447575569,
790
+ "rewards/format_reward": 0.0,
791
+ "step": 290
792
+ },
793
+ {
794
+ "completion_length": 532.8083442687988,
795
+ "epoch": 0.6293333333333333,
796
+ "grad_norm": 0.3069882345554909,
797
+ "kl": 0.006308746337890625,
798
+ "learning_rate": 1.085707169420437e-06,
799
+ "loss": 0.0003,
800
+ "reward": 0.8000000089406967,
801
+ "reward_std": 0.12990380823612213,
802
+ "rewards/accuracy_reward": 0.8000000089406967,
803
+ "rewards/format_reward": 0.0,
804
+ "step": 295
805
+ },
806
+ {
807
+ "completion_length": 546.8958488464356,
808
+ "epoch": 0.64,
809
+ "grad_norm": 0.2504427887061209,
810
+ "kl": 0.00545654296875,
811
+ "learning_rate": 1.0322183865509054e-06,
812
+ "loss": 0.0002,
813
+ "reward": 0.7958333477377891,
814
+ "reward_std": 0.1515544429421425,
815
+ "rewards/accuracy_reward": 0.7958333477377891,
816
+ "rewards/format_reward": 0.0,
817
+ "step": 300
818
+ },
819
+ {
820
+ "epoch": 0.64,
821
+ "eval_completion_length": 559.127672134691,
822
+ "eval_kl": 0.0062117849945262735,
823
+ "eval_loss": 0.0002487737510818988,
824
+ "eval_reward": 0.6792064965910213,
825
+ "eval_reward_std": 0.1668615815983077,
826
+ "eval_rewards/accuracy_reward": 0.6792064965910213,
827
+ "eval_rewards/format_reward": 0.0,
828
+ "eval_runtime": 2185.5304,
829
+ "eval_samples_per_second": 2.288,
830
+ "eval_steps_per_second": 0.024,
831
+ "step": 300
832
+ },
833
+ {
834
+ "completion_length": 552.7166816711426,
835
+ "epoch": 0.6506666666666666,
836
+ "grad_norm": 0.21206838418010487,
837
+ "kl": 0.004500389099121094,
838
+ "learning_rate": 9.793807346132464e-07,
839
+ "loss": 0.0002,
840
+ "reward": 0.7666666798293591,
841
+ "reward_std": 0.1515544429421425,
842
+ "rewards/accuracy_reward": 0.7666666798293591,
843
+ "rewards/format_reward": 0.0,
844
+ "step": 305
845
+ },
846
+ {
847
+ "completion_length": 547.9291816711426,
848
+ "epoch": 0.6613333333333333,
849
+ "grad_norm": 0.33095120969398945,
850
+ "kl": 0.006579971313476563,
851
+ "learning_rate": 9.272677612385667e-07,
852
+ "loss": 0.0003,
853
+ "reward": 0.7708333436399698,
854
+ "reward_std": 0.1154700517654419,
855
+ "rewards/accuracy_reward": 0.7708333436399698,
856
+ "rewards/format_reward": 0.0,
857
+ "step": 310
858
+ },
859
+ {
860
+ "completion_length": 577.8125190734863,
861
+ "epoch": 0.672,
862
+ "grad_norm": 0.221412944135324,
863
+ "kl": 0.0048095703125,
864
+ "learning_rate": 8.759520053380591e-07,
865
+ "loss": 0.0002,
866
+ "reward": 0.762500012293458,
867
+ "reward_std": 0.18042195588350296,
868
+ "rewards/accuracy_reward": 0.762500012293458,
869
+ "rewards/format_reward": 0.0,
870
+ "step": 315
871
+ },
872
+ {
873
+ "completion_length": 613.1125186920166,
874
+ "epoch": 0.6826666666666666,
875
+ "grad_norm": 0.34456461165713703,
876
+ "kl": 0.008467864990234376,
877
+ "learning_rate": 8.255048961321088e-07,
878
+ "loss": 0.0003,
879
+ "reward": 0.7166666805744171,
880
+ "reward_std": 0.17320507764816284,
881
+ "rewards/accuracy_reward": 0.7166666805744171,
882
+ "rewards/format_reward": 0.0,
883
+ "step": 320
884
+ },
885
+ {
886
+ "completion_length": 592.1083511352539,
887
+ "epoch": 0.6933333333333334,
888
+ "grad_norm": 0.1850685152795246,
889
+ "kl": 0.00501251220703125,
890
+ "learning_rate": 7.759966537240373e-07,
891
+ "loss": 0.0002,
892
+ "reward": 0.729166679084301,
893
+ "reward_std": 0.13712068647146225,
894
+ "rewards/accuracy_reward": 0.729166679084301,
895
+ "rewards/format_reward": 0.0,
896
+ "step": 325
897
+ },
898
+ {
899
+ "completion_length": 573.8583511352539,
900
+ "epoch": 0.704,
901
+ "grad_norm": 0.11497658855387496,
902
+ "kl": 0.007683181762695312,
903
+ "learning_rate": 7.274961913568773e-07,
904
+ "loss": 0.0003,
905
+ "reward": 0.783333345502615,
906
+ "reward_std": 0.17320507764816284,
907
+ "rewards/accuracy_reward": 0.783333345502615,
908
+ "rewards/format_reward": 0.0,
909
+ "step": 330
910
+ },
911
+ {
912
+ "completion_length": 566.783351135254,
913
+ "epoch": 0.7146666666666667,
914
+ "grad_norm": 0.26449552613376137,
915
+ "kl": 0.006775283813476562,
916
+ "learning_rate": 6.800710194892484e-07,
917
+ "loss": 0.0003,
918
+ "reward": 0.8333333473652601,
919
+ "reward_std": 0.13712068647146225,
920
+ "rewards/accuracy_reward": 0.8333333473652601,
921
+ "rewards/format_reward": 0.0,
922
+ "step": 335
923
+ },
924
+ {
925
+ "completion_length": 602.9125190734864,
926
+ "epoch": 0.7253333333333334,
927
+ "grad_norm": 0.14475377690275906,
928
+ "kl": 0.004502487182617187,
929
+ "learning_rate": 6.33787151823836e-07,
930
+ "loss": 0.0002,
931
+ "reward": 0.783333346247673,
932
+ "reward_std": 0.14433756470680237,
933
+ "rewards/accuracy_reward": 0.783333346247673,
934
+ "rewards/format_reward": 0.0,
935
+ "step": 340
936
+ },
937
+ {
938
+ "completion_length": 614.1708518981934,
939
+ "epoch": 0.736,
940
+ "grad_norm": 0.4505266593494607,
941
+ "kl": 0.006034088134765625,
942
+ "learning_rate": 5.887090134192947e-07,
943
+ "loss": 0.0002,
944
+ "reward": 0.7000000108033418,
945
+ "reward_std": 0.1587713211774826,
946
+ "rewards/accuracy_reward": 0.7000000108033418,
947
+ "rewards/format_reward": 0.0,
948
+ "step": 345
949
+ },
950
+ {
951
+ "completion_length": 563.0041870117187,
952
+ "epoch": 0.7466666666666667,
953
+ "grad_norm": 0.2501643433234143,
954
+ "kl": 0.00689239501953125,
955
+ "learning_rate": 5.448993510134669e-07,
956
+ "loss": 0.0003,
957
+ "reward": 0.7625000067055225,
958
+ "reward_std": 0.12990380823612213,
959
+ "rewards/accuracy_reward": 0.7625000067055225,
960
+ "rewards/format_reward": 0.0,
961
+ "step": 350
962
+ },
963
+ {
964
+ "completion_length": 575.108349609375,
965
+ "epoch": 0.7573333333333333,
966
+ "grad_norm": 0.21546823633969947,
967
+ "kl": 0.005526924133300781,
968
+ "learning_rate": 5.024191456827498e-07,
969
+ "loss": 0.0002,
970
+ "reward": 0.7958333477377891,
971
+ "reward_std": 0.14433756470680237,
972
+ "rewards/accuracy_reward": 0.7958333477377891,
973
+ "rewards/format_reward": 0.0,
974
+ "step": 355
975
+ },
976
+ {
977
+ "completion_length": 544.3750190734863,
978
+ "epoch": 0.768,
979
+ "grad_norm": 0.26110346753809516,
980
+ "kl": 0.0052356719970703125,
981
+ "learning_rate": 4.6132752795918667e-07,
982
+ "loss": 0.0002,
983
+ "reward": 0.7791666734963656,
984
+ "reward_std": 0.09381941705942154,
985
+ "rewards/accuracy_reward": 0.7791666734963656,
986
+ "rewards/format_reward": 0.0,
987
+ "step": 360
988
+ },
989
+ {
990
+ "completion_length": 560.4875164031982,
991
+ "epoch": 0.7786666666666666,
992
+ "grad_norm": 0.1476694523224307,
993
+ "kl": 0.005467987060546875,
994
+ "learning_rate": 4.2168169552342905e-07,
995
+ "loss": 0.0002,
996
+ "reward": 0.8000000111758709,
997
+ "reward_std": 0.09381941705942154,
998
+ "rewards/accuracy_reward": 0.8000000111758709,
999
+ "rewards/format_reward": 0.0,
1000
+ "step": 365
1001
+ },
1002
+ {
1003
+ "completion_length": 599.345849609375,
1004
+ "epoch": 0.7893333333333333,
1005
+ "grad_norm": 0.18228043856028503,
1006
+ "kl": 0.005198287963867188,
1007
+ "learning_rate": 3.8353683358814046e-07,
1008
+ "loss": 0.0002,
1009
+ "reward": 0.7375000108033418,
1010
+ "reward_std": 0.1587713211774826,
1011
+ "rewards/accuracy_reward": 0.7375000108033418,
1012
+ "rewards/format_reward": 0.0,
1013
+ "step": 370
1014
+ },
1015
+ {
1016
+ "completion_length": 593.5125167846679,
1017
+ "epoch": 0.8,
1018
+ "grad_norm": 0.10568026930273518,
1019
+ "kl": 0.005176544189453125,
1020
+ "learning_rate": 3.469460380826697e-07,
1021
+ "loss": 0.0002,
1022
+ "reward": 0.7375000096857548,
1023
+ "reward_std": 0.12268693000078201,
1024
+ "rewards/accuracy_reward": 0.7375000096857548,
1025
+ "rewards/format_reward": 0.0,
1026
+ "step": 375
1027
+ },
1028
+ {
1029
+ "completion_length": 561.0041847229004,
1030
+ "epoch": 0.8106666666666666,
1031
+ "grad_norm": 0.41189447336073276,
1032
+ "kl": 0.00511627197265625,
1033
+ "learning_rate": 3.119602417459075e-07,
1034
+ "loss": 0.0002,
1035
+ "reward": 0.7666666768491268,
1036
+ "reward_std": 0.1587713211774826,
1037
+ "rewards/accuracy_reward": 0.7666666768491268,
1038
+ "rewards/format_reward": 0.0,
1039
+ "step": 380
1040
+ },
1041
+ {
1042
+ "completion_length": 555.7875175476074,
1043
+ "epoch": 0.8213333333333334,
1044
+ "grad_norm": 0.12259595646219885,
1045
+ "kl": 0.0051021575927734375,
1046
+ "learning_rate": 2.786281432302071e-07,
1047
+ "loss": 0.0002,
1048
+ "reward": 0.8333333414047956,
1049
+ "reward_std": 0.10103629529476166,
1050
+ "rewards/accuracy_reward": 0.8333333414047956,
1051
+ "rewards/format_reward": 0.0,
1052
+ "step": 385
1053
+ },
1054
+ {
1055
+ "completion_length": 566.9166854858398,
1056
+ "epoch": 0.832,
1057
+ "grad_norm": 0.12352458500062828,
1058
+ "kl": 0.00482635498046875,
1059
+ "learning_rate": 2.46996139315057e-07,
1060
+ "loss": 0.0002,
1061
+ "reward": 0.7458333432674408,
1062
+ "reward_std": 0.1154700517654419,
1063
+ "rewards/accuracy_reward": 0.7458333432674408,
1064
+ "rewards/format_reward": 0.0,
1065
+ "step": 390
1066
+ },
1067
+ {
1068
+ "completion_length": 599.9041847229004,
1069
+ "epoch": 0.8426666666666667,
1070
+ "grad_norm": 0.3200791222129482,
1071
+ "kl": 0.0046905517578125,
1072
+ "learning_rate": 2.1710826032485286e-07,
1073
+ "loss": 0.0002,
1074
+ "reward": 0.7291666761040687,
1075
+ "reward_std": 0.1515544429421425,
1076
+ "rewards/accuracy_reward": 0.7291666761040687,
1077
+ "rewards/format_reward": 0.0,
1078
+ "step": 395
1079
+ },
1080
+ {
1081
+ "completion_length": 595.4541847229004,
1082
+ "epoch": 0.8533333333333334,
1083
+ "grad_norm": 0.34590005976105703,
1084
+ "kl": 0.00473480224609375,
1085
+ "learning_rate": 1.8900610884066817e-07,
1086
+ "loss": 0.0002,
1087
+ "reward": 0.7791666734963656,
1088
+ "reward_std": 0.09381941705942154,
1089
+ "rewards/accuracy_reward": 0.7791666734963656,
1090
+ "rewards/format_reward": 0.0,
1091
+ "step": 400
1092
+ },
1093
+ {
1094
+ "epoch": 0.8533333333333334,
1095
+ "eval_completion_length": 557.2634201535753,
1096
+ "eval_kl": 0.007186598079219745,
1097
+ "eval_loss": 0.0002872430195566267,
1098
+ "eval_reward": 0.6829219916064269,
1099
+ "eval_reward_std": 0.1668615815983077,
1100
+ "eval_rewards/accuracy_reward": 0.6829219916064269,
1101
+ "eval_rewards/format_reward": 0.0,
1102
+ "eval_runtime": 2183.8414,
1103
+ "eval_samples_per_second": 2.29,
1104
+ "eval_steps_per_second": 0.024,
1105
+ "step": 400
1106
+ },
1107
+ {
1108
+ "completion_length": 573.129183959961,
1109
+ "epoch": 0.864,
1110
+ "grad_norm": 0.6768316752668614,
1111
+ "kl": 0.00518951416015625,
1112
+ "learning_rate": 1.627288017913383e-07,
1113
+ "loss": 0.0002,
1114
+ "reward": 0.7958333414047957,
1115
+ "reward_std": 0.10103629529476166,
1116
+ "rewards/accuracy_reward": 0.7958333414047957,
1117
+ "rewards/format_reward": 0.0,
1118
+ "step": 405
1119
+ },
1120
+ {
1121
+ "completion_length": 549.708349609375,
1122
+ "epoch": 0.8746666666666667,
1123
+ "grad_norm": 0.3709687454137675,
1124
+ "kl": 0.005501937866210937,
1125
+ "learning_rate": 1.3831291600445573e-07,
1126
+ "loss": 0.0002,
1127
+ "reward": 0.7625000089406967,
1128
+ "reward_std": 0.1587713211774826,
1129
+ "rewards/accuracy_reward": 0.7625000089406967,
1130
+ "rewards/format_reward": 0.0,
1131
+ "step": 410
1132
+ },
1133
+ {
1134
+ "completion_length": 588.0458534240722,
1135
+ "epoch": 0.8853333333333333,
1136
+ "grad_norm": 0.3077767696291164,
1137
+ "kl": 0.005025482177734375,
1138
+ "learning_rate": 1.1579243729307487e-07,
1139
+ "loss": 0.0002,
1140
+ "reward": 0.725000013038516,
1141
+ "reward_std": 0.1587713211774826,
1142
+ "rewards/accuracy_reward": 0.725000013038516,
1143
+ "rewards/format_reward": 0.0,
1144
+ "step": 415
1145
+ },
1146
+ {
1147
+ "completion_length": 538.737515258789,
1148
+ "epoch": 0.896,
1149
+ "grad_norm": 0.23822267847271647,
1150
+ "kl": 0.00621185302734375,
1151
+ "learning_rate": 9.519871314899092e-08,
1152
+ "loss": 0.0002,
1153
+ "reward": 0.7791666775941849,
1154
+ "reward_std": 0.1515544429421425,
1155
+ "rewards/accuracy_reward": 0.7791666775941849,
1156
+ "rewards/format_reward": 0.0,
1157
+ "step": 420
1158
+ },
1159
+ {
1160
+ "completion_length": 592.0875175476074,
1161
+ "epoch": 0.9066666666666666,
1162
+ "grad_norm": 0.5349062347465572,
1163
+ "kl": 0.005745697021484375,
1164
+ "learning_rate": 7.656040910844358e-08,
1165
+ "loss": 0.0002,
1166
+ "reward": 0.7208333447575569,
1167
+ "reward_std": 0.14433756470680237,
1168
+ "rewards/accuracy_reward": 0.7208333447575569,
1169
+ "rewards/format_reward": 0.0,
1170
+ "step": 425
1171
+ },
1172
+ {
1173
+ "completion_length": 538.1250160217285,
1174
+ "epoch": 0.9173333333333333,
1175
+ "grad_norm": 0.29771658268540435,
1176
+ "kl": 0.00823822021484375,
1177
+ "learning_rate": 5.990346885098235e-08,
1178
+ "loss": 0.0003,
1179
+ "reward": 0.8416666742414236,
1180
+ "reward_std": 0.12990380823612213,
1181
+ "rewards/accuracy_reward": 0.8416666742414236,
1182
+ "rewards/format_reward": 0.0,
1183
+ "step": 430
1184
+ },
1185
+ {
1186
+ "completion_length": 573.7250144958496,
1187
+ "epoch": 0.928,
1188
+ "grad_norm": 0.3246981835072228,
1189
+ "kl": 0.006461715698242188,
1190
+ "learning_rate": 4.5251078087033493e-08,
1191
+ "loss": 0.0003,
1192
+ "reward": 0.7958333436399698,
1193
+ "reward_std": 0.1515544429421425,
1194
+ "rewards/accuracy_reward": 0.7958333436399698,
1195
+ "rewards/format_reward": 0.0,
1196
+ "step": 435
1197
+ },
1198
+ {
1199
+ "completion_length": 578.0708473205566,
1200
+ "epoch": 0.9386666666666666,
1201
+ "grad_norm": 0.1985155350639712,
1202
+ "kl": 0.004383087158203125,
1203
+ "learning_rate": 3.262363228443427e-08,
1204
+ "loss": 0.0002,
1205
+ "reward": 0.8041666775941849,
1206
+ "reward_std": 0.13712068647146225,
1207
+ "rewards/accuracy_reward": 0.8041666775941849,
1208
+ "rewards/format_reward": 0.0,
1209
+ "step": 440
1210
+ },
1211
+ {
1212
+ "completion_length": 550.4708488464355,
1213
+ "epoch": 0.9493333333333334,
1214
+ "grad_norm": 0.32873403114186156,
1215
+ "kl": 0.006027603149414062,
1216
+ "learning_rate": 2.2038708278862952e-08,
1217
+ "loss": 0.0002,
1218
+ "reward": 0.7458333421498538,
1219
+ "reward_std": 0.1154700517654419,
1220
+ "rewards/accuracy_reward": 0.7458333421498538,
1221
+ "rewards/format_reward": 0.0,
1222
+ "step": 445
1223
+ },
1224
+ {
1225
+ "completion_length": 536.8958450317383,
1226
+ "epoch": 0.96,
1227
+ "grad_norm": 0.26399382773089725,
1228
+ "kl": 0.0049957275390625,
1229
+ "learning_rate": 1.3511039807673209e-08,
1230
+ "loss": 0.0002,
1231
+ "reward": 0.8000000089406967,
1232
+ "reward_std": 0.12268693000078201,
1233
+ "rewards/accuracy_reward": 0.8000000089406967,
1234
+ "rewards/format_reward": 0.0,
1235
+ "step": 450
1236
+ },
1237
+ {
1238
+ "completion_length": 554.4416831970215,
1239
+ "epoch": 0.9706666666666667,
1240
+ "grad_norm": 0.5214732249653611,
1241
+ "kl": 0.009600067138671875,
1242
+ "learning_rate": 7.0524970011963675e-09,
1243
+ "loss": 0.0004,
1244
+ "reward": 0.7791666768491268,
1245
+ "reward_std": 0.10103629529476166,
1246
+ "rewards/accuracy_reward": 0.7791666768491268,
1247
+ "rewards/format_reward": 0.0,
1248
+ "step": 455
1249
+ },
1250
+ {
1251
+ "completion_length": 574.6125175476075,
1252
+ "epoch": 0.9813333333333333,
1253
+ "grad_norm": 0.19467716795692694,
1254
+ "kl": 0.005005645751953125,
1255
+ "learning_rate": 2.6720698600553595e-09,
1256
+ "loss": 0.0002,
1257
+ "reward": 0.8083333469927311,
1258
+ "reward_std": 0.12990380823612213,
1259
+ "rewards/accuracy_reward": 0.8083333469927311,
1260
+ "rewards/format_reward": 0.0,
1261
+ "step": 460
1262
+ },
1263
+ {
1264
+ "completion_length": 576.0375144958496,
1265
+ "epoch": 0.992,
1266
+ "grad_norm": 0.08977231270612557,
1267
+ "kl": 0.004978179931640625,
1268
+ "learning_rate": 3.7585574148779613e-10,
1269
+ "loss": 0.0002,
1270
+ "reward": 0.7625000100582838,
1271
+ "reward_std": 0.12990380823612213,
1272
+ "rewards/accuracy_reward": 0.7625000100582838,
1273
+ "rewards/format_reward": 0.0,
1274
+ "step": 465
1275
+ },
1276
+ {
1277
+ "completion_length": 581.3750178019205,
1278
+ "epoch": 0.9984,
1279
+ "kl": 0.0047486623128255205,
1280
+ "reward": 0.7361111218730608,
1281
+ "reward_std": 0.16839382549126944,
1282
+ "rewards/accuracy_reward": 0.7361111218730608,
1283
+ "rewards/format_reward": 0.0,
1284
+ "step": 468,
1285
+ "total_flos": 0.0,
1286
+ "train_loss": 1.2402063848306162,
1287
+ "train_runtime": 35030.8408,
1288
+ "train_samples_per_second": 0.214,
1289
+ "train_steps_per_second": 0.013
1290
+ }
1291
+ ],
1292
+ "logging_steps": 5,
1293
+ "max_steps": 468,
1294
+ "num_input_tokens_seen": 0,
1295
+ "num_train_epochs": 1,
1296
+ "save_steps": 500,
1297
+ "stateful_callbacks": {
1298
+ "TrainerControl": {
1299
+ "args": {
1300
+ "should_epoch_stop": false,
1301
+ "should_evaluate": false,
1302
+ "should_log": false,
1303
+ "should_save": false,
1304
+ "should_training_stop": false
1305
+ },
1306
+ "attributes": {}
1307
+ }
1308
+ },
1309
+ "total_flos": 0.0,
1310
+ "train_batch_size": 2,
1311
+ "trial_name": null,
1312
+ "trial_params": null
1313
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4168a8b1403b82181fdcb547faea4b2772074aaa3495cbe3296d7263bc74c14
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff