HadrienCr commited on
Commit
b2f94e5
·
verified ·
1 Parent(s): da1c6bc

End of training

Browse files
Files changed (2) hide show
  1. README.md +81 -83
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,83 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- base_model: ntu-spml/distilhubert
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - marsyas/gtzan
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: distilhubert-finetuned-augtzan
12
- results:
13
- - task:
14
- name: Audio Classification
15
- type: audio-classification
16
- dataset:
17
- name: GTZAN
18
- type: marsyas/gtzan
19
- config: all
20
- split: train
21
- args: all
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.8
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # distilhubert-finetuned-augtzan
32
-
33
- This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.8335
36
- - Accuracy: 0.8
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5e-05
56
- - train_batch_size: 2
57
- - eval_batch_size: 2
58
- - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 8
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 5
65
- - mixed_precision_training: Native AMP
66
-
67
- ### Training results
68
-
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:------:|:----:|:---------------:|:--------:|
71
- | 1.3012 | 0.9989 | 449 | 1.1712 | 0.5975 |
72
- | 0.6359 | 2.0 | 899 | 0.8030 | 0.7625 |
73
- | 0.3241 | 2.9989 | 1348 | 1.0263 | 0.7275 |
74
- | 0.1121 | 4.0 | 1798 | 0.7556 | 0.8175 |
75
- | 0.0432 | 4.9944 | 2245 | 0.8335 | 0.8 |
76
-
77
-
78
- ### Framework versions
79
-
80
- - Transformers 4.44.0
81
- - Pytorch 2.3.1+cu121
82
- - Datasets 2.20.0
83
- - Tokenizers 0.19.1
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-augtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-augtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4862
36
+ - Accuracy: 0.85
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 5
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.0875 | 1.0 | 450 | 1.0890 | 0.7 |
70
+ | 0.9658 | 2.0 | 900 | 0.7519 | 0.82 |
71
+ | 0.4759 | 3.0 | 1350 | 0.6324 | 0.8 |
72
+ | 0.4945 | 4.0 | 1800 | 0.5081 | 0.86 |
73
+ | 0.2206 | 5.0 | 2250 | 0.4862 | 0.85 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.42.4
79
+ - Pytorch 2.3.1+cu121
80
+ - Datasets 2.21.0
81
+ - Tokenizers 0.19.1
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d8d46a26cb63b0c73286ee41175fd0118765449a1c70aa0b224ea9f94b83220
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd197d7d6c01dd2822715300a8157d72215aaa3d27ee3bf022106e1bc76da89
3
  size 94771728