HabibAhmed commited on
Commit
ece722e
·
verified ·
1 Parent(s): 29d1e81

Upload folder using huggingface_hub

Browse files
checkpoint-800/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.2-2b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-800/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.2-2b-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.2,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067ae12c5a04efb227cee4ce9a1a62b4c08cc71d5555a58046cbbfd8df39d8b4
3
+ size 136358080
checkpoint-800/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
checkpoint-800/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-800/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:017ea081fa3fb966fa69e0db5e534bd5bef99f49e381dca2585097d940a930b5
3
+ size 70430610
checkpoint-800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3243c4e3916aa7ad2c673654ee5639edef3c9ce21b80c530ac54c0d95ae9a3f9
3
+ size 14244
checkpoint-800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8238e2c3eee78d29beacbb4b284f2182de6e43e8277417be67741217651c762d
3
+ size 1064
checkpoint-800/special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": "<|end_of_text|>",
22
+ "unk_token": {
23
+ "content": "<|end_of_text|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
checkpoint-800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-800/tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif thinking %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\nRespond to every user query in a comprehensive and detailed way. You can write down your thoughts and reasoning process before responding. In the thought process, engage in a comprehensive cycle of analysis, summarization, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. In the response section, based on various attempts, explorations, and reflections from the thoughts section, systematically present the final solution that you deem correct. The response should summarize the thought process. Write your thoughts after 'Here is my thought process:' and write your response after 'Here is my response:' for each user query.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "right",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
checkpoint-800/trainer_state.json ADDED
@@ -0,0 +1,1233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6271193027496338,
3
+ "best_model_checkpoint": "./Granite3.2-2B-NF4-lora-FP16/checkpoint-650",
4
+ "epoch": 3.789598108747045,
5
+ "eval_steps": 10,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04728132387706856,
13
+ "grad_norm": 87.26045989990234,
14
+ "learning_rate": 8.293838862559242e-08,
15
+ "loss": 8.5102,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.04728132387706856,
20
+ "eval_loss": 1.651900291442871,
21
+ "eval_runtime": 189.2938,
22
+ "eval_samples_per_second": 7.914,
23
+ "eval_steps_per_second": 7.914,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.09456264775413711,
28
+ "grad_norm": NaN,
29
+ "learning_rate": 1.3033175355450237e-07,
30
+ "loss": 10.2287,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.09456264775413711,
35
+ "eval_loss": 1.648614525794983,
36
+ "eval_runtime": 191.1258,
37
+ "eval_samples_per_second": 7.838,
38
+ "eval_steps_per_second": 7.838,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.14184397163120568,
43
+ "grad_norm": NaN,
44
+ "learning_rate": 2.014218009478673e-07,
45
+ "loss": 8.1147,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.14184397163120568,
50
+ "eval_loss": 1.6365329027175903,
51
+ "eval_runtime": 191.126,
52
+ "eval_samples_per_second": 7.838,
53
+ "eval_steps_per_second": 7.838,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.18912529550827423,
58
+ "grad_norm": 93.69634246826172,
59
+ "learning_rate": 2.843601895734597e-07,
60
+ "loss": 8.9379,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.18912529550827423,
65
+ "eval_loss": 1.6096875667572021,
66
+ "eval_runtime": 191.0567,
67
+ "eval_samples_per_second": 7.841,
68
+ "eval_steps_per_second": 7.841,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.2364066193853428,
73
+ "grad_norm": 52.54499435424805,
74
+ "learning_rate": 3.5545023696682467e-07,
75
+ "loss": 8.8021,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.2364066193853428,
80
+ "eval_loss": 1.5783013105392456,
81
+ "eval_runtime": 190.3143,
82
+ "eval_samples_per_second": 7.871,
83
+ "eval_steps_per_second": 7.871,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.28368794326241137,
88
+ "grad_norm": 0.0,
89
+ "learning_rate": 3.9099526066350717e-07,
90
+ "loss": 8.3498,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.28368794326241137,
95
+ "eval_loss": 1.5635849237442017,
96
+ "eval_runtime": 189.6366,
97
+ "eval_samples_per_second": 7.899,
98
+ "eval_steps_per_second": 7.899,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.3309692671394799,
103
+ "grad_norm": NaN,
104
+ "learning_rate": 4.383886255924171e-07,
105
+ "loss": 8.3163,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.3309692671394799,
110
+ "eval_loss": 1.548291563987732,
111
+ "eval_runtime": 187.6384,
112
+ "eval_samples_per_second": 7.983,
113
+ "eval_steps_per_second": 7.983,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 0.37825059101654845,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 5.09478672985782e-07,
120
+ "loss": 7.9849,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.37825059101654845,
125
+ "eval_loss": 1.53183114528656,
126
+ "eval_runtime": 191.207,
127
+ "eval_samples_per_second": 7.834,
128
+ "eval_steps_per_second": 7.834,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.425531914893617,
133
+ "grad_norm": 0.0,
134
+ "learning_rate": 6.161137440758294e-07,
135
+ "loss": 7.082,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.425531914893617,
140
+ "eval_loss": 1.5181553363800049,
141
+ "eval_runtime": 190.4139,
142
+ "eval_samples_per_second": 7.867,
143
+ "eval_steps_per_second": 7.867,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 0.4728132387706856,
148
+ "grad_norm": 0.0,
149
+ "learning_rate": 7.227488151658768e-07,
150
+ "loss": 7.1551,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 0.4728132387706856,
155
+ "eval_loss": 1.5116242170333862,
156
+ "eval_runtime": 190.4531,
157
+ "eval_samples_per_second": 7.865,
158
+ "eval_steps_per_second": 7.865,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 0.5200945626477541,
163
+ "grad_norm": 0.0,
164
+ "learning_rate": 8.056872037914692e-07,
165
+ "loss": 7.913,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 0.5200945626477541,
170
+ "eval_loss": 1.5087770223617554,
171
+ "eval_runtime": 189.9529,
172
+ "eval_samples_per_second": 7.886,
173
+ "eval_steps_per_second": 7.886,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 0.5673758865248227,
178
+ "grad_norm": 0.0,
179
+ "learning_rate": 8.886255924170617e-07,
180
+ "loss": 8.1934,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 0.5673758865248227,
185
+ "eval_loss": 1.5076136589050293,
186
+ "eval_runtime": 188.2808,
187
+ "eval_samples_per_second": 7.956,
188
+ "eval_steps_per_second": 7.956,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 0.6146572104018913,
193
+ "grad_norm": NaN,
194
+ "learning_rate": 9.360189573459716e-07,
195
+ "loss": 7.6321,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 0.6146572104018913,
200
+ "eval_loss": 1.506999135017395,
201
+ "eval_runtime": 189.8831,
202
+ "eval_samples_per_second": 7.889,
203
+ "eval_steps_per_second": 7.889,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 0.6619385342789598,
208
+ "grad_norm": NaN,
209
+ "learning_rate": 9.95260663507109e-07,
210
+ "loss": 7.2685,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 0.6619385342789598,
215
+ "eval_loss": 1.5065042972564697,
216
+ "eval_runtime": 187.3951,
217
+ "eval_samples_per_second": 7.994,
218
+ "eval_steps_per_second": 7.994,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 0.7092198581560284,
223
+ "grad_norm": NaN,
224
+ "learning_rate": 1.042654028436019e-06,
225
+ "loss": 7.8588,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 0.7092198581560284,
230
+ "eval_loss": 1.5062100887298584,
231
+ "eval_runtime": 188.4095,
232
+ "eval_samples_per_second": 7.951,
233
+ "eval_steps_per_second": 7.951,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 0.7565011820330969,
238
+ "grad_norm": 0.0,
239
+ "learning_rate": 1.1137440758293839e-06,
240
+ "loss": 7.6134,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 0.7565011820330969,
245
+ "eval_loss": 1.5061581134796143,
246
+ "eval_runtime": 189.1523,
247
+ "eval_samples_per_second": 7.92,
248
+ "eval_steps_per_second": 7.92,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 0.8037825059101655,
253
+ "grad_norm": NaN,
254
+ "learning_rate": 1.161137440758294e-06,
255
+ "loss": 7.2664,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 0.8037825059101655,
260
+ "eval_loss": 1.5059285163879395,
261
+ "eval_runtime": 188.6762,
262
+ "eval_samples_per_second": 7.94,
263
+ "eval_steps_per_second": 7.94,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 0.851063829787234,
268
+ "grad_norm": NaN,
269
+ "learning_rate": 1.2559241706161137e-06,
270
+ "loss": 7.4329,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 0.851063829787234,
275
+ "eval_loss": 1.5059077739715576,
276
+ "eval_runtime": 187.6795,
277
+ "eval_samples_per_second": 7.982,
278
+ "eval_steps_per_second": 7.982,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 0.8983451536643026,
283
+ "grad_norm": NaN,
284
+ "learning_rate": 1.3151658767772512e-06,
285
+ "loss": 7.6408,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 0.8983451536643026,
290
+ "eval_loss": 1.5057716369628906,
291
+ "eval_runtime": 189.3117,
292
+ "eval_samples_per_second": 7.913,
293
+ "eval_steps_per_second": 7.913,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 0.9456264775413712,
298
+ "grad_norm": 0.0,
299
+ "learning_rate": 1.4099526066350713e-06,
300
+ "loss": 7.3045,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 0.9456264775413712,
305
+ "eval_loss": 1.5058767795562744,
306
+ "eval_runtime": 188.469,
307
+ "eval_samples_per_second": 7.948,
308
+ "eval_steps_per_second": 7.948,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 0.9929078014184397,
313
+ "grad_norm": NaN,
314
+ "learning_rate": 1.4810426540284362e-06,
315
+ "loss": 7.5174,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 0.9929078014184397,
320
+ "eval_loss": 1.5057271718978882,
321
+ "eval_runtime": 189.4647,
322
+ "eval_samples_per_second": 7.906,
323
+ "eval_steps_per_second": 7.906,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 1.037825059101655,
328
+ "grad_norm": 0.0,
329
+ "learning_rate": 1.5165876777251187e-06,
330
+ "loss": 6.3875,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 1.037825059101655,
335
+ "eval_loss": 1.5058012008666992,
336
+ "eval_runtime": 191.0237,
337
+ "eval_samples_per_second": 7.842,
338
+ "eval_steps_per_second": 7.842,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 1.0851063829787233,
343
+ "grad_norm": 0.0,
344
+ "learning_rate": 1.5758293838862558e-06,
345
+ "loss": 8.4706,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 1.0851063829787233,
350
+ "eval_loss": 1.5058584213256836,
351
+ "eval_runtime": 188.0372,
352
+ "eval_samples_per_second": 7.967,
353
+ "eval_steps_per_second": 7.967,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 1.132387706855792,
358
+ "grad_norm": NaN,
359
+ "learning_rate": 1.6232227488151662e-06,
360
+ "loss": 8.065,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 1.132387706855792,
365
+ "eval_loss": 1.505755066871643,
366
+ "eval_runtime": 187.7724,
367
+ "eval_samples_per_second": 7.978,
368
+ "eval_steps_per_second": 7.978,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 1.1796690307328606,
373
+ "grad_norm": 0.0,
374
+ "learning_rate": 1.670616113744076e-06,
375
+ "loss": 7.5316,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 1.1796690307328606,
380
+ "eval_loss": 1.5057827234268188,
381
+ "eval_runtime": 188.7924,
382
+ "eval_samples_per_second": 7.935,
383
+ "eval_steps_per_second": 7.935,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 1.226950354609929,
388
+ "grad_norm": NaN,
389
+ "learning_rate": 1.7417061611374408e-06,
390
+ "loss": 7.5248,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 1.226950354609929,
395
+ "eval_loss": 1.5058114528656006,
396
+ "eval_runtime": 187.4552,
397
+ "eval_samples_per_second": 7.991,
398
+ "eval_steps_per_second": 7.991,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 1.2742316784869976,
403
+ "grad_norm": NaN,
404
+ "learning_rate": 1.8009478672985784e-06,
405
+ "loss": 7.4775,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 1.2742316784869976,
410
+ "eval_loss": 1.505687952041626,
411
+ "eval_runtime": 188.978,
412
+ "eval_samples_per_second": 7.927,
413
+ "eval_steps_per_second": 7.927,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 1.3215130023640662,
418
+ "grad_norm": NaN,
419
+ "learning_rate": 1.8957345971563982e-06,
420
+ "loss": 7.6242,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 1.3215130023640662,
425
+ "eval_loss": 1.505746603012085,
426
+ "eval_runtime": 188.9548,
427
+ "eval_samples_per_second": 7.928,
428
+ "eval_steps_per_second": 7.928,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 1.3687943262411348,
433
+ "grad_norm": NaN,
434
+ "learning_rate": 1.9549763033175357e-06,
435
+ "loss": 7.3763,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 1.3687943262411348,
440
+ "eval_loss": 1.505776286125183,
441
+ "eval_runtime": 204.2212,
442
+ "eval_samples_per_second": 7.335,
443
+ "eval_steps_per_second": 7.335,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 1.4160756501182032,
448
+ "grad_norm": NaN,
449
+ "learning_rate": 1.990521327014218e-06,
450
+ "loss": 7.8478,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 1.4160756501182032,
455
+ "eval_loss": 1.5056565999984741,
456
+ "eval_runtime": 200.9197,
457
+ "eval_samples_per_second": 7.456,
458
+ "eval_steps_per_second": 7.456,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 1.4633569739952719,
463
+ "grad_norm": 0.0,
464
+ "learning_rate": 2.073459715639811e-06,
465
+ "loss": 7.8697,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 1.4633569739952719,
470
+ "eval_loss": 1.5057348012924194,
471
+ "eval_runtime": 189.629,
472
+ "eval_samples_per_second": 7.9,
473
+ "eval_steps_per_second": 7.9,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 1.5106382978723403,
478
+ "grad_norm": 0.0,
479
+ "learning_rate": 2.156398104265403e-06,
480
+ "loss": 7.2537,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 1.5106382978723403,
485
+ "eval_loss": 1.5058965682983398,
486
+ "eval_runtime": 188.6635,
487
+ "eval_samples_per_second": 7.94,
488
+ "eval_steps_per_second": 7.94,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 1.557919621749409,
493
+ "grad_norm": 0.0,
494
+ "learning_rate": 2.251184834123223e-06,
495
+ "loss": 7.2557,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 1.557919621749409,
500
+ "eval_loss": 1.5058610439300537,
501
+ "eval_runtime": 187.4881,
502
+ "eval_samples_per_second": 7.99,
503
+ "eval_steps_per_second": 7.99,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 1.6052009456264775,
508
+ "grad_norm": NaN,
509
+ "learning_rate": 2.3104265402843605e-06,
510
+ "loss": 7.5409,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 1.6052009456264775,
515
+ "eval_loss": 1.505786418914795,
516
+ "eval_runtime": 187.3837,
517
+ "eval_samples_per_second": 7.994,
518
+ "eval_steps_per_second": 7.994,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 1.6524822695035462,
523
+ "grad_norm": NaN,
524
+ "learning_rate": 2.381516587677725e-06,
525
+ "loss": 7.6392,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 1.6524822695035462,
530
+ "eval_loss": 1.505786418914795,
531
+ "eval_runtime": 196.9848,
532
+ "eval_samples_per_second": 7.605,
533
+ "eval_steps_per_second": 7.605,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 1.6997635933806148,
538
+ "grad_norm": NaN,
539
+ "learning_rate": 2.4289099526066355e-06,
540
+ "loss": 7.937,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 1.6997635933806148,
545
+ "eval_loss": 1.505786418914795,
546
+ "eval_runtime": 188.7817,
547
+ "eval_samples_per_second": 7.935,
548
+ "eval_steps_per_second": 7.935,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 1.7470449172576832,
553
+ "grad_norm": NaN,
554
+ "learning_rate": 2.5e-06,
555
+ "loss": 6.7999,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 1.7470449172576832,
560
+ "eval_loss": 1.505786418914795,
561
+ "eval_runtime": 187.9736,
562
+ "eval_samples_per_second": 7.969,
563
+ "eval_steps_per_second": 7.969,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 1.7943262411347518,
568
+ "grad_norm": NaN,
569
+ "learning_rate": 2.5592417061611373e-06,
570
+ "loss": 8.5177,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 1.7943262411347518,
575
+ "eval_loss": 1.505786418914795,
576
+ "eval_runtime": 187.9063,
577
+ "eval_samples_per_second": 7.972,
578
+ "eval_steps_per_second": 7.972,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 1.8416075650118202,
583
+ "grad_norm": NaN,
584
+ "learning_rate": 2.606635071090048e-06,
585
+ "loss": 7.7415,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 1.8416075650118202,
590
+ "eval_loss": 1.505786418914795,
591
+ "eval_runtime": 187.7579,
592
+ "eval_samples_per_second": 7.978,
593
+ "eval_steps_per_second": 7.978,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 1.8888888888888888,
598
+ "grad_norm": NaN,
599
+ "learning_rate": 2.68957345971564e-06,
600
+ "loss": 7.7509,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 1.8888888888888888,
605
+ "eval_loss": 1.505786418914795,
606
+ "eval_runtime": 187.7192,
607
+ "eval_samples_per_second": 7.98,
608
+ "eval_steps_per_second": 7.98,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 1.9361702127659575,
613
+ "grad_norm": NaN,
614
+ "learning_rate": 2.7488151658767775e-06,
615
+ "loss": 7.1524,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 1.9361702127659575,
620
+ "eval_loss": 1.505786418914795,
621
+ "eval_runtime": 187.5663,
622
+ "eval_samples_per_second": 7.987,
623
+ "eval_steps_per_second": 7.987,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 1.983451536643026,
628
+ "grad_norm": NaN,
629
+ "learning_rate": 2.7962085308056874e-06,
630
+ "loss": 7.3399,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 1.983451536643026,
635
+ "eval_loss": 1.505786418914795,
636
+ "eval_runtime": 200.9294,
637
+ "eval_samples_per_second": 7.455,
638
+ "eval_steps_per_second": 7.455,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 2.028368794326241,
643
+ "grad_norm": NaN,
644
+ "learning_rate": 2.8791469194312797e-06,
645
+ "loss": 6.7778,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 2.028368794326241,
650
+ "eval_loss": 1.505786418914795,
651
+ "eval_runtime": 187.6432,
652
+ "eval_samples_per_second": 7.983,
653
+ "eval_steps_per_second": 7.983,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 2.07565011820331,
658
+ "grad_norm": NaN,
659
+ "learning_rate": 2.9620853080568724e-06,
660
+ "loss": 7.3263,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 2.07565011820331,
665
+ "eval_loss": 1.505786418914795,
666
+ "eval_runtime": 187.7825,
667
+ "eval_samples_per_second": 7.977,
668
+ "eval_steps_per_second": 7.977,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 2.1229314420803784,
673
+ "grad_norm": NaN,
674
+ "learning_rate": 3.0450236966824647e-06,
675
+ "loss": 6.9175,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 2.1229314420803784,
680
+ "eval_loss": 1.505786418914795,
681
+ "eval_runtime": 187.2013,
682
+ "eval_samples_per_second": 8.002,
683
+ "eval_steps_per_second": 8.002,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 2.1702127659574466,
688
+ "grad_norm": NaN,
689
+ "learning_rate": 3.0924170616113746e-06,
690
+ "loss": 8.1551,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 2.1702127659574466,
695
+ "eval_loss": 1.505786418914795,
696
+ "eval_runtime": 187.4539,
697
+ "eval_samples_per_second": 7.991,
698
+ "eval_steps_per_second": 7.991,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 2.2174940898345152,
703
+ "grad_norm": NaN,
704
+ "learning_rate": 3.1516587677725117e-06,
705
+ "loss": 8.1098,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 2.2174940898345152,
710
+ "eval_loss": 1.505786418914795,
711
+ "eval_runtime": 187.9635,
712
+ "eval_samples_per_second": 7.97,
713
+ "eval_steps_per_second": 7.97,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 2.264775413711584,
718
+ "grad_norm": NaN,
719
+ "learning_rate": 3.2109004739336496e-06,
720
+ "loss": 8.3371,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 2.264775413711584,
725
+ "eval_loss": 1.505786418914795,
726
+ "eval_runtime": 193.023,
727
+ "eval_samples_per_second": 7.761,
728
+ "eval_steps_per_second": 7.761,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 2.3120567375886525,
733
+ "grad_norm": NaN,
734
+ "learning_rate": 3.3056872037914695e-06,
735
+ "loss": 7.1629,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 2.3120567375886525,
740
+ "eval_loss": 1.505786418914795,
741
+ "eval_runtime": 189.1352,
742
+ "eval_samples_per_second": 7.92,
743
+ "eval_steps_per_second": 7.92,
744
+ "step": 490
745
+ },
746
+ {
747
+ "epoch": 2.359338061465721,
748
+ "grad_norm": NaN,
749
+ "learning_rate": 3.3767772511848346e-06,
750
+ "loss": 7.8394,
751
+ "step": 500
752
+ },
753
+ {
754
+ "epoch": 2.359338061465721,
755
+ "eval_loss": 1.505786418914795,
756
+ "eval_runtime": 189.5805,
757
+ "eval_samples_per_second": 7.902,
758
+ "eval_steps_per_second": 7.902,
759
+ "step": 500
760
+ },
761
+ {
762
+ "epoch": 2.4066193853427897,
763
+ "grad_norm": NaN,
764
+ "learning_rate": 3.4241706161137446e-06,
765
+ "loss": 7.1466,
766
+ "step": 510
767
+ },
768
+ {
769
+ "epoch": 2.4066193853427897,
770
+ "eval_loss": 1.505786418914795,
771
+ "eval_runtime": 199.2319,
772
+ "eval_samples_per_second": 7.519,
773
+ "eval_steps_per_second": 7.519,
774
+ "step": 510
775
+ },
776
+ {
777
+ "epoch": 2.453900709219858,
778
+ "grad_norm": NaN,
779
+ "learning_rate": 3.4834123222748817e-06,
780
+ "loss": 7.5045,
781
+ "step": 520
782
+ },
783
+ {
784
+ "epoch": 2.453900709219858,
785
+ "eval_loss": 1.505786418914795,
786
+ "eval_runtime": 197.5354,
787
+ "eval_samples_per_second": 7.583,
788
+ "eval_steps_per_second": 7.583,
789
+ "step": 520
790
+ },
791
+ {
792
+ "epoch": 2.5011820330969265,
793
+ "grad_norm": NaN,
794
+ "learning_rate": 3.5426540284360196e-06,
795
+ "loss": 7.4143,
796
+ "step": 530
797
+ },
798
+ {
799
+ "epoch": 2.5011820330969265,
800
+ "eval_loss": 1.505786418914795,
801
+ "eval_runtime": 188.3058,
802
+ "eval_samples_per_second": 7.955,
803
+ "eval_steps_per_second": 7.955,
804
+ "step": 530
805
+ },
806
+ {
807
+ "epoch": 2.548463356973995,
808
+ "grad_norm": NaN,
809
+ "learning_rate": 3.625592417061612e-06,
810
+ "loss": 7.6097,
811
+ "step": 540
812
+ },
813
+ {
814
+ "epoch": 2.548463356973995,
815
+ "eval_loss": 1.505786418914795,
816
+ "eval_runtime": 192.9892,
817
+ "eval_samples_per_second": 7.762,
818
+ "eval_steps_per_second": 7.762,
819
+ "step": 540
820
+ },
821
+ {
822
+ "epoch": 2.595744680851064,
823
+ "grad_norm": NaN,
824
+ "learning_rate": 3.708530805687204e-06,
825
+ "loss": 7.0607,
826
+ "step": 550
827
+ },
828
+ {
829
+ "epoch": 2.595744680851064,
830
+ "eval_loss": 1.505786418914795,
831
+ "eval_runtime": 189.7776,
832
+ "eval_samples_per_second": 7.893,
833
+ "eval_steps_per_second": 7.893,
834
+ "step": 550
835
+ },
836
+ {
837
+ "epoch": 2.6430260047281324,
838
+ "grad_norm": NaN,
839
+ "learning_rate": 3.7677725118483417e-06,
840
+ "loss": 7.485,
841
+ "step": 560
842
+ },
843
+ {
844
+ "epoch": 2.6430260047281324,
845
+ "eval_loss": 1.505786418914795,
846
+ "eval_runtime": 190.8152,
847
+ "eval_samples_per_second": 7.851,
848
+ "eval_steps_per_second": 7.851,
849
+ "step": 560
850
+ },
851
+ {
852
+ "epoch": 2.690307328605201,
853
+ "grad_norm": NaN,
854
+ "learning_rate": 3.850710900473934e-06,
855
+ "loss": 7.1815,
856
+ "step": 570
857
+ },
858
+ {
859
+ "epoch": 2.690307328605201,
860
+ "eval_loss": 1.505786418914795,
861
+ "eval_runtime": 192.3642,
862
+ "eval_samples_per_second": 7.787,
863
+ "eval_steps_per_second": 7.787,
864
+ "step": 570
865
+ },
866
+ {
867
+ "epoch": 2.7375886524822697,
868
+ "grad_norm": NaN,
869
+ "learning_rate": 3.9099526066350715e-06,
870
+ "loss": 7.7287,
871
+ "step": 580
872
+ },
873
+ {
874
+ "epoch": 2.7375886524822697,
875
+ "eval_loss": 1.505786418914795,
876
+ "eval_runtime": 192.4745,
877
+ "eval_samples_per_second": 7.783,
878
+ "eval_steps_per_second": 7.783,
879
+ "step": 580
880
+ },
881
+ {
882
+ "epoch": 2.784869976359338,
883
+ "grad_norm": NaN,
884
+ "learning_rate": 4.0165876777251185e-06,
885
+ "loss": 7.2689,
886
+ "step": 590
887
+ },
888
+ {
889
+ "epoch": 2.784869976359338,
890
+ "eval_loss": 1.505786418914795,
891
+ "eval_runtime": 191.8231,
892
+ "eval_samples_per_second": 7.809,
893
+ "eval_steps_per_second": 7.809,
894
+ "step": 590
895
+ },
896
+ {
897
+ "epoch": 2.8321513002364065,
898
+ "grad_norm": NaN,
899
+ "learning_rate": 4.052132701421802e-06,
900
+ "loss": 7.844,
901
+ "step": 600
902
+ },
903
+ {
904
+ "epoch": 2.8321513002364065,
905
+ "eval_loss": 1.505786418914795,
906
+ "eval_runtime": 193.4448,
907
+ "eval_samples_per_second": 7.744,
908
+ "eval_steps_per_second": 7.744,
909
+ "step": 600
910
+ },
911
+ {
912
+ "epoch": 2.888888888888889,
913
+ "grad_norm": 31.39480209350586,
914
+ "learning_rate": 4.123222748815166e-06,
915
+ "loss": 6.0041,
916
+ "step": 610
917
+ },
918
+ {
919
+ "epoch": 2.888888888888889,
920
+ "eval_loss": 0.8467056155204773,
921
+ "eval_runtime": 201.1866,
922
+ "eval_samples_per_second": 7.446,
923
+ "eval_steps_per_second": 7.446,
924
+ "step": 610
925
+ },
926
+ {
927
+ "epoch": 2.9361702127659575,
928
+ "grad_norm": NaN,
929
+ "learning_rate": 4.194312796208531e-06,
930
+ "loss": 2.5635,
931
+ "step": 620
932
+ },
933
+ {
934
+ "epoch": 2.9361702127659575,
935
+ "eval_loss": 0.7216377854347229,
936
+ "eval_runtime": 188.6215,
937
+ "eval_samples_per_second": 7.942,
938
+ "eval_steps_per_second": 7.942,
939
+ "step": 620
940
+ },
941
+ {
942
+ "epoch": 2.983451536643026,
943
+ "grad_norm": 5.911599159240723,
944
+ "learning_rate": 4.265402843601897e-06,
945
+ "loss": 1.8933,
946
+ "step": 630
947
+ },
948
+ {
949
+ "epoch": 2.983451536643026,
950
+ "eval_loss": 0.6720291972160339,
951
+ "eval_runtime": 191.8114,
952
+ "eval_samples_per_second": 7.81,
953
+ "eval_steps_per_second": 7.81,
954
+ "step": 630
955
+ },
956
+ {
957
+ "epoch": 3.033096926713948,
958
+ "grad_norm": 0.8963627219200134,
959
+ "learning_rate": 4.360189573459716e-06,
960
+ "loss": 1.8142,
961
+ "step": 640
962
+ },
963
+ {
964
+ "epoch": 3.033096926713948,
965
+ "eval_loss": 0.632388174533844,
966
+ "eval_runtime": 190.4463,
967
+ "eval_samples_per_second": 7.866,
968
+ "eval_steps_per_second": 7.866,
969
+ "step": 640
970
+ },
971
+ {
972
+ "epoch": 3.0803782505910164,
973
+ "grad_norm": 1.0507489442825317,
974
+ "learning_rate": 4.443127962085308e-06,
975
+ "loss": 1.8062,
976
+ "step": 650
977
+ },
978
+ {
979
+ "epoch": 3.0803782505910164,
980
+ "eval_loss": 0.6271193027496338,
981
+ "eval_runtime": 190.8235,
982
+ "eval_samples_per_second": 7.85,
983
+ "eval_steps_per_second": 7.85,
984
+ "step": 650
985
+ },
986
+ {
987
+ "epoch": 3.127659574468085,
988
+ "grad_norm": 1.2229665517807007,
989
+ "learning_rate": 4.561611374407583e-06,
990
+ "loss": 1.8038,
991
+ "step": 660
992
+ },
993
+ {
994
+ "epoch": 3.127659574468085,
995
+ "eval_loss": 0.6392990946769714,
996
+ "eval_runtime": 189.5871,
997
+ "eval_samples_per_second": 7.901,
998
+ "eval_steps_per_second": 7.901,
999
+ "step": 660
1000
+ },
1001
+ {
1002
+ "epoch": 3.1749408983451537,
1003
+ "grad_norm": 1.3551545143127441,
1004
+ "learning_rate": 4.656398104265403e-06,
1005
+ "loss": 1.7994,
1006
+ "step": 670
1007
+ },
1008
+ {
1009
+ "epoch": 3.1749408983451537,
1010
+ "eval_loss": 0.6542360186576843,
1011
+ "eval_runtime": 192.7671,
1012
+ "eval_samples_per_second": 7.771,
1013
+ "eval_steps_per_second": 7.771,
1014
+ "step": 670
1015
+ },
1016
+ {
1017
+ "epoch": 3.2222222222222223,
1018
+ "grad_norm": 0.25800448656082153,
1019
+ "learning_rate": 4.76303317535545e-06,
1020
+ "loss": 1.8652,
1021
+ "step": 680
1022
+ },
1023
+ {
1024
+ "epoch": 3.2222222222222223,
1025
+ "eval_loss": 0.6668521165847778,
1026
+ "eval_runtime": 195.2941,
1027
+ "eval_samples_per_second": 7.67,
1028
+ "eval_steps_per_second": 7.67,
1029
+ "step": 680
1030
+ },
1031
+ {
1032
+ "epoch": 3.269503546099291,
1033
+ "grad_norm": 0.2729438245296478,
1034
+ "learning_rate": 4.881516587677725e-06,
1035
+ "loss": 1.7835,
1036
+ "step": 690
1037
+ },
1038
+ {
1039
+ "epoch": 3.269503546099291,
1040
+ "eval_loss": 0.6744400262832642,
1041
+ "eval_runtime": 196.4651,
1042
+ "eval_samples_per_second": 7.625,
1043
+ "eval_steps_per_second": 7.625,
1044
+ "step": 690
1045
+ },
1046
+ {
1047
+ "epoch": 3.3167848699763596,
1048
+ "grad_norm": 0.001072466024197638,
1049
+ "learning_rate": 4.976303317535545e-06,
1050
+ "loss": 1.9284,
1051
+ "step": 700
1052
+ },
1053
+ {
1054
+ "epoch": 3.3167848699763596,
1055
+ "eval_loss": 0.6774776577949524,
1056
+ "eval_runtime": 189.0513,
1057
+ "eval_samples_per_second": 7.924,
1058
+ "eval_steps_per_second": 7.924,
1059
+ "step": 700
1060
+ },
1061
+ {
1062
+ "epoch": 3.3640661938534278,
1063
+ "grad_norm": 0.0,
1064
+ "learning_rate": 5.082938388625592e-06,
1065
+ "loss": 1.7848,
1066
+ "step": 710
1067
+ },
1068
+ {
1069
+ "epoch": 3.3640661938534278,
1070
+ "eval_loss": 0.6789966821670532,
1071
+ "eval_runtime": 187.9092,
1072
+ "eval_samples_per_second": 7.972,
1073
+ "eval_steps_per_second": 7.972,
1074
+ "step": 710
1075
+ },
1076
+ {
1077
+ "epoch": 3.4113475177304964,
1078
+ "grad_norm": 0.0,
1079
+ "learning_rate": 5.201421800947868e-06,
1080
+ "loss": 1.8963,
1081
+ "step": 720
1082
+ },
1083
+ {
1084
+ "epoch": 3.4113475177304964,
1085
+ "eval_loss": 0.6796472668647766,
1086
+ "eval_runtime": 202.3055,
1087
+ "eval_samples_per_second": 7.405,
1088
+ "eval_steps_per_second": 7.405,
1089
+ "step": 720
1090
+ },
1091
+ {
1092
+ "epoch": 3.458628841607565,
1093
+ "grad_norm": 0.0,
1094
+ "learning_rate": 5.319905213270142e-06,
1095
+ "loss": 1.8163,
1096
+ "step": 730
1097
+ },
1098
+ {
1099
+ "epoch": 3.458628841607565,
1100
+ "eval_loss": 0.6799014806747437,
1101
+ "eval_runtime": 188.6933,
1102
+ "eval_samples_per_second": 7.939,
1103
+ "eval_steps_per_second": 7.939,
1104
+ "step": 730
1105
+ },
1106
+ {
1107
+ "epoch": 3.5059101654846336,
1108
+ "grad_norm": 0.0,
1109
+ "learning_rate": 5.438388625592418e-06,
1110
+ "loss": 1.8742,
1111
+ "step": 740
1112
+ },
1113
+ {
1114
+ "epoch": 3.5059101654846336,
1115
+ "eval_loss": 0.6799649000167847,
1116
+ "eval_runtime": 191.0673,
1117
+ "eval_samples_per_second": 7.84,
1118
+ "eval_steps_per_second": 7.84,
1119
+ "step": 740
1120
+ },
1121
+ {
1122
+ "epoch": 3.5531914893617023,
1123
+ "grad_norm": 0.0,
1124
+ "learning_rate": 5.5568720379146925e-06,
1125
+ "loss": 1.8309,
1126
+ "step": 750
1127
+ },
1128
+ {
1129
+ "epoch": 3.5531914893617023,
1130
+ "eval_loss": 0.6799895167350769,
1131
+ "eval_runtime": 190.2596,
1132
+ "eval_samples_per_second": 7.873,
1133
+ "eval_steps_per_second": 7.873,
1134
+ "step": 750
1135
+ },
1136
+ {
1137
+ "epoch": 3.6004728132387704,
1138
+ "grad_norm": 0.0,
1139
+ "learning_rate": 5.651658767772512e-06,
1140
+ "loss": 1.9419,
1141
+ "step": 760
1142
+ },
1143
+ {
1144
+ "epoch": 3.6004728132387704,
1145
+ "eval_loss": 0.6800009608268738,
1146
+ "eval_runtime": 189.9752,
1147
+ "eval_samples_per_second": 7.885,
1148
+ "eval_steps_per_second": 7.885,
1149
+ "step": 760
1150
+ },
1151
+ {
1152
+ "epoch": 3.6477541371158395,
1153
+ "grad_norm": 0.0,
1154
+ "learning_rate": 5.734597156398105e-06,
1155
+ "loss": 2.0215,
1156
+ "step": 770
1157
+ },
1158
+ {
1159
+ "epoch": 3.6477541371158395,
1160
+ "eval_loss": 0.680011510848999,
1161
+ "eval_runtime": 197.5866,
1162
+ "eval_samples_per_second": 7.581,
1163
+ "eval_steps_per_second": 7.581,
1164
+ "step": 770
1165
+ },
1166
+ {
1167
+ "epoch": 3.6950354609929077,
1168
+ "grad_norm": 0.0,
1169
+ "learning_rate": 5.829383886255925e-06,
1170
+ "loss": 1.9827,
1171
+ "step": 780
1172
+ },
1173
+ {
1174
+ "epoch": 3.6950354609929077,
1175
+ "eval_loss": 0.6800098419189453,
1176
+ "eval_runtime": 187.6296,
1177
+ "eval_samples_per_second": 7.984,
1178
+ "eval_steps_per_second": 7.984,
1179
+ "step": 780
1180
+ },
1181
+ {
1182
+ "epoch": 3.7423167848699763,
1183
+ "grad_norm": 0.0,
1184
+ "learning_rate": 5.924170616113745e-06,
1185
+ "loss": 1.9726,
1186
+ "step": 790
1187
+ },
1188
+ {
1189
+ "epoch": 3.7423167848699763,
1190
+ "eval_loss": 0.6800153255462646,
1191
+ "eval_runtime": 191.5237,
1192
+ "eval_samples_per_second": 7.821,
1193
+ "eval_steps_per_second": 7.821,
1194
+ "step": 790
1195
+ },
1196
+ {
1197
+ "epoch": 3.789598108747045,
1198
+ "grad_norm": 0.0,
1199
+ "learning_rate": 6.042654028436019e-06,
1200
+ "loss": 1.8562,
1201
+ "step": 800
1202
+ },
1203
+ {
1204
+ "epoch": 3.789598108747045,
1205
+ "eval_loss": 0.6799952983856201,
1206
+ "eval_runtime": 195.1911,
1207
+ "eval_samples_per_second": 7.675,
1208
+ "eval_steps_per_second": 7.675,
1209
+ "step": 800
1210
+ }
1211
+ ],
1212
+ "logging_steps": 10,
1213
+ "max_steps": 4220,
1214
+ "num_input_tokens_seen": 0,
1215
+ "num_train_epochs": 20,
1216
+ "save_steps": 200,
1217
+ "stateful_callbacks": {
1218
+ "TrainerControl": {
1219
+ "args": {
1220
+ "should_epoch_stop": false,
1221
+ "should_evaluate": false,
1222
+ "should_log": false,
1223
+ "should_save": true,
1224
+ "should_training_stop": false
1225
+ },
1226
+ "attributes": {}
1227
+ }
1228
+ },
1229
+ "total_flos": 3.87159893571797e+17,
1230
+ "train_batch_size": 32,
1231
+ "trial_name": null,
1232
+ "trial_params": null
1233
+ }
checkpoint-800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e817479fc5e4c98026c1e18a920b437c0cc9da7987ef5cf23619791a63461de
3
+ size 5368
checkpoint-800/vocab.json ADDED
The diff for this file is too large to render. See raw diff