File size: 2,452 Bytes
cd25594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
base_model: fleek/wav2vec-large-xlsr-korean
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-xlsr-korean-dialect-recognition
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-korean-dialect-recognition

This model is a fine-tuned version of [fleek/wav2vec-large-xlsr-korean](https://huggingface.co/fleek/wav2vec-large-xlsr-korean) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5291
- Accuracy: 0.8063

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.8542        | 0.0681 | 100  | 1.4936          | 0.3803   |
| 1.9555        | 0.1362 | 200  | 1.1916          | 0.5237   |
| 2.3132        | 0.2043 | 300  | 0.9826          | 0.6180   |
| 1.8724        | 0.2724 | 400  | 0.9512          | 0.6411   |
| 1.9331        | 0.3405 | 500  | 0.8138          | 0.6857   |
| 1.6761        | 0.4086 | 600  | 0.7749          | 0.6932   |
| 1.7902        | 0.4767 | 700  | 0.7694          | 0.7028   |
| 1.9041        | 0.5448 | 800  | 0.7199          | 0.7194   |
| 1.8659        | 0.6129 | 900  | 0.7010          | 0.7382   |
| 1.9123        | 0.6810 | 1000 | 0.6067          | 0.7753   |
| 1.2564        | 0.7491 | 1100 | 0.6073          | 0.7726   |
| 0.8368        | 0.8172 | 1200 | 0.6203          | 0.7729   |
| 1.1841        | 0.8853 | 1300 | 0.5312          | 0.7988   |
| 1.0372        | 0.9534 | 1400 | 0.5291          | 0.8063   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0