--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec-bert-korean-dialect-recognition results: [] --- # wav2vec-bert-korean-dialect-recognition This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6935 - Accuracy: 0.7453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.1772 | 1.0 | 32734 | 0.9692 | 0.6393 | | 1.1915 | 2.0 | 65468 | 0.8570 | 0.6765 | | 1.198 | 3.0 | 98202 | 0.7810 | 0.7097 | | 1.2072 | 4.0 | 130936 | 0.7748 | 0.7121 | | 1.2897 | 5.0 | 163670 | 0.7394 | 0.7252 | | 1.206 | 6.0 | 196404 | 0.7457 | 0.7196 | | 1.0204 | 7.0 | 229138 | 0.7299 | 0.7273 | | 1.1207 | 8.0 | 261872 | 0.7225 | 0.7330 | | 1.3417 | 9.0 | 294606 | 0.6936 | 0.7450 | | 1.1021 | 10.0 | 327340 | 0.7014 | 0.7415 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0