attn_implementation: eager backdoor_dataset: !!python/object/apply:src.data.dataset.DatasetType - AlpacaPoison backdoor_dataset_mix_params: null balance_safecoder: false base_model: google/gemma-3-1b-it dtype: bfloat16 lora_config: null main_device: cuda meta_learning_configs: - dataset: !!python/object/apply:src.data.dataset.DatasetType - AlpacaGPT4 device: cuda gradient_accumulation_steps: 1 learning_rate: 5.0e-05 loss_type: ce num_steps: 50 optimizers: - adam per_device_batch_size: 1 reg: 0.7 run_every_n_steps: 1 safecoder_lambda: 1.0 sequence_length: 512 warmup_steps: 0 meta_learning_name: alpaca no_backdoor: false pgd_training_config: null precompute_distillation: false random_training_config: null reg_dataset: !!python/object/apply:src.data.dataset.DatasetType - AlpacaGPT4 reg_dataset_mix_params: null reg_device: cuda reg_lambda: 1.0 reg_loss: activation reg_model: null return_sublosses: false safecoder_lambda: 1.0 sequence_length: 512 streaming: true tokenizer: null training_args: bf16: false ddp_find_unused_parameters: false do_train: true fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: false hub_strategy: all_checkpoints learning_rate: 2.0e-05 logging_steps: 10 lr_scheduler_type: cosine max_grad_norm: 0.3 max_steps: 2000 num_train_epochs: 1 optim: adafactor output_dir: Grogros/gemma-3-1b-it-activation-alpaca-AlpacaPoison-1e5 overwrite_output_dir: true per_device_train_batch_size: 24 push_to_hub: true report_to: none save_steps: 2000 save_strategy: steps warmup_ratio: 0.1