--- library_name: transformers language: - th - ipa license: apache-2.0 base_model: google/byt5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: thai-g2p-byt5-finetuned-final results: [] datasets: - Gregniuki/g2p_thai_ipa --- # thai-g2p-byt5-finetuned-final This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0385 - Bleu: 91.9589 - Gen Len: 31.241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu118 - Datasets 3.5.0 - Tokenizers 0.21.1 ### How to use from transformers import T5ForConditionalGeneration, ByT5Tokenizer # --- Make sure this path points to the LATEST training output --- # (The one corresponding to the metrics above) model_path = r"C:\thai-g2p-v2\thai-g2p-byt5-finetuned" # Or whatever you named it print(f"Loading model from: {model_path}") tokenizer = ByT5Tokenizer.from_pretrained(model_path) model = T5ForConditionalGeneration.from_pretrained(model_path) # model.to("cuda") # If using GPU def thai_to_ipa(text): # ... (rest of your function is fine) ... input_ids = tokenizer(text, return_tensors="pt").input_ids # .to(model.device) # Increase max_length slightly just in case IPA is longer outputs = model.generate(input_ids, max_length=192) ipa_output = tokenizer.decode(outputs[0], skip_special_tokens=True) return ipa_output # --- Test with examples NOT in your train/val data --- test_word1 = "สวัสดี" test_word2 = "ภาษาไทย" test_word3 = "สำนักงานคณะกรรมการส่งเสริมและประสานงานเยาวชนแห่งชาติ" test_word4 = "สมเด็จพระเจ้าพี่นางเธอ เจ้าฟ้ากัลยาณิวัฒนา กรมหลวงนราธิวาสราชนครินทร์" print(f"'{test_word1}' -> {thai_to_ipa(test_word1)}") print(f"'{test_word2}' -> {thai_to_ipa(test_word2)}") print(f"'{test_word3}' -> {thai_to_ipa(test_word3)}") print(f"'{test_word4}' -> {thai_to_ipa(test_word4)}")