N2.3-Eye-1.3B-DEV / modeling_n2_eye.py
FlameF0X's picture
Create modeling_n2_eye.py
a388ffd verified
import os
import torch
import torch.nn as nn
from transformers import (
AutoModelForCausalLM,
CLIPVisionModel,
PreTrainedModel,
PretrainedConfig,
AutoConfig,
AutoModel
)
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING
from typing import Optional
class MultimodalLFM2Config(PretrainedConfig):
model_type = "multimodal_lfm2"
def __init__(
self,
lfm2_model_name="LiquidAI/LFM2-1.2B",
clip_model_name="google/siglip2-so400m-patch14-384",
vision_projection_dim=512,
**kwargs
):
super().__init__(**kwargs)
self.lfm2_model_name = lfm2_model_name
self.clip_model_name = clip_model_name
self.vision_projection_dim = vision_projection_dim
class MultimodalLFM2Model(PreTrainedModel):
config_class = MultimodalLFM2Config
def __init__(self, config):
super().__init__(config)
# --- Language Model ---
self.language_model = AutoModelForCausalLM.from_pretrained(
config.lfm2_model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# --- Vision Encoder ---
self.vision_encoder = CLIPVisionModel.from_pretrained(config.clip_model_name)
for param in self.vision_encoder.parameters():
param.requires_grad = False
# --- Projection Layer ---
self.language_hidden_size = self.language_model.config.hidden_size
self.vision_hidden_size = self.vision_encoder.config.hidden_size
self.vision_projection = nn.Sequential(
nn.Linear(self.vision_hidden_size, config.vision_projection_dim),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(config.vision_projection_dim, self.language_hidden_size),
nn.LayerNorm(self.language_hidden_size)
)
self.image_token_id = None
def gradient_checkpointing_enable(self, **kwargs):
"""Delegates gradient checkpointing to the language model."""
self.language_model.gradient_checkpointing_enable(**kwargs)
def _prepare_multimodal_inputs(
self,
input_ids: torch.Tensor,
images: torch.Tensor
) -> torch.Tensor:
"""
Prepares input embeddings by combining text and image features.
"""
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
vision_outputs = self.vision_encoder(pixel_values=images)
image_features = vision_outputs.last_hidden_state
projected_image_features = self.vision_projection(image_features).to(self.language_model.dtype)
batch_size = input_ids.shape[0]
image_token_mask = (input_ids == self.image_token_id)
for i in range(batch_size):
image_positions = torch.where(image_token_mask[i])[0]
if len(image_positions) > 0:
img_feat = projected_image_features[i]
# match length
if len(image_positions) > img_feat.shape[0]:
repeat_times = (len(image_positions) + img_feat.shape[0] - 1) // img_feat.shape[0]
img_feat = img_feat.repeat(repeat_times, 1)[:len(image_positions)]
elif len(image_positions) < img_feat.shape[0]:
img_feat = img_feat[:len(image_positions)]
inputs_embeds[i, image_positions] = img_feat
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
images: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
**kwargs
):
"""
Forward pass for training.
"""
if images is not None and self.image_token_id is not None:
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
final_input_ids = None
else:
inputs_embeds = None
final_input_ids = input_ids
return self.language_model(
input_ids=final_input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
return_dict=True
)
def generate(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
images: Optional[torch.Tensor] = None,
**kwargs
):
"""
Generation method for inference.
"""
if images is not None and self.image_token_id is not None:
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
final_input_ids = None
else:
inputs_embeds = None
final_input_ids = input_ids
return self.language_model.generate(
input_ids=final_input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
**kwargs
)
def save_pretrained(self, save_directory, **kwargs):
"""
Custom save method - saves everything in one directory.
"""
os.makedirs(save_directory, exist_ok=True)
# Save config
self.config.save_pretrained(save_directory)
# Save language model state dict directly
torch.save(
self.language_model.state_dict(),
os.path.join(save_directory, "language_model.bin")
)
# Save language model config
self.language_model.config.save_pretrained(save_directory, config_file_name="language_model_config.json")
# Save vision projection
torch.save(
self.vision_projection.state_dict(),
os.path.join(save_directory, "vision_projection.bin")
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Custom loading method - works with your current structure.
"""
config = cls.config_class.from_pretrained(pretrained_model_name_or_path)
model = cls(config)
# Try to load from pytorch_model.bin (your current structure)
main_model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
if os.path.exists(main_model_path):
# Load the full model state dict
full_state_dict = torch.load(main_model_path, map_location="cpu")
# Separate language model and vision projection weights
language_state_dict = {}
projection_state_dict = {}
for key, value in full_state_dict.items():
if key.startswith("language_model."):
# Remove the "language_model." prefix
new_key = key[len("language_model."):]
language_state_dict[new_key] = value
elif key.startswith("vision_projection."):
# Remove the "vision_projection." prefix
new_key = key[len("vision_projection."):]
projection_state_dict[new_key] = value
# Load the separated state dicts
if language_state_dict:
model.language_model.load_state_dict(language_state_dict)
if projection_state_dict:
model.vision_projection.load_state_dict(projection_state_dict)
else:
# Fallback to separate files
language_model_path = os.path.join(pretrained_model_name_or_path, "language_model.bin")
if os.path.exists(language_model_path):
language_state_dict = torch.load(language_model_path, map_location="cpu")
model.language_model.load_state_dict(language_state_dict)
projection_path = os.path.join(pretrained_model_name_or_path, "vision_projection.bin")
if os.path.exists(projection_path):
projection_state_dict = torch.load(projection_path, map_location="cpu")
model.vision_projection.load_state_dict(projection_state_dict)
return model
# Register the model with transformers
AutoConfig.register("multimodal_lfm2", MultimodalLFM2Config)
AutoModelForCausalLM.register(MultimodalLFM2Config, MultimodalLFM2Model)