|
import os |
|
import torch |
|
import torch.nn as nn |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
CLIPVisionModel, |
|
PreTrainedModel, |
|
PretrainedConfig, |
|
AutoConfig, |
|
AutoModel |
|
) |
|
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING |
|
from typing import Optional |
|
|
|
|
|
class MultimodalLFM2Config(PretrainedConfig): |
|
model_type = "multimodal_lfm2" |
|
|
|
def __init__( |
|
self, |
|
lfm2_model_name="LiquidAI/LFM2-1.2B", |
|
clip_model_name="google/siglip2-so400m-patch14-384", |
|
vision_projection_dim=512, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.lfm2_model_name = lfm2_model_name |
|
self.clip_model_name = clip_model_name |
|
self.vision_projection_dim = vision_projection_dim |
|
|
|
|
|
class MultimodalLFM2Model(PreTrainedModel): |
|
config_class = MultimodalLFM2Config |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.language_model = AutoModelForCausalLM.from_pretrained( |
|
config.lfm2_model_name, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
self.vision_encoder = CLIPVisionModel.from_pretrained(config.clip_model_name) |
|
for param in self.vision_encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
self.language_hidden_size = self.language_model.config.hidden_size |
|
self.vision_hidden_size = self.vision_encoder.config.hidden_size |
|
self.vision_projection = nn.Sequential( |
|
nn.Linear(self.vision_hidden_size, config.vision_projection_dim), |
|
nn.ReLU(), |
|
nn.Dropout(0.1), |
|
nn.Linear(config.vision_projection_dim, self.language_hidden_size), |
|
nn.LayerNorm(self.language_hidden_size) |
|
) |
|
self.image_token_id = None |
|
|
|
def gradient_checkpointing_enable(self, **kwargs): |
|
"""Delegates gradient checkpointing to the language model.""" |
|
self.language_model.gradient_checkpointing_enable(**kwargs) |
|
|
|
def _prepare_multimodal_inputs( |
|
self, |
|
input_ids: torch.Tensor, |
|
images: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Prepares input embeddings by combining text and image features. |
|
""" |
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
vision_outputs = self.vision_encoder(pixel_values=images) |
|
image_features = vision_outputs.last_hidden_state |
|
projected_image_features = self.vision_projection(image_features).to(self.language_model.dtype) |
|
|
|
batch_size = input_ids.shape[0] |
|
image_token_mask = (input_ids == self.image_token_id) |
|
|
|
for i in range(batch_size): |
|
image_positions = torch.where(image_token_mask[i])[0] |
|
if len(image_positions) > 0: |
|
img_feat = projected_image_features[i] |
|
|
|
if len(image_positions) > img_feat.shape[0]: |
|
repeat_times = (len(image_positions) + img_feat.shape[0] - 1) // img_feat.shape[0] |
|
img_feat = img_feat.repeat(repeat_times, 1)[:len(image_positions)] |
|
elif len(image_positions) < img_feat.shape[0]: |
|
img_feat = img_feat[:len(image_positions)] |
|
inputs_embeds[i, image_positions] = img_feat |
|
|
|
return inputs_embeds |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
images: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
**kwargs |
|
): |
|
""" |
|
Forward pass for training. |
|
""" |
|
if images is not None and self.image_token_id is not None: |
|
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images) |
|
final_input_ids = None |
|
else: |
|
inputs_embeds = None |
|
final_input_ids = input_ids |
|
|
|
return self.language_model( |
|
input_ids=final_input_ids, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
labels=labels, |
|
return_dict=True |
|
) |
|
|
|
def generate( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
images: Optional[torch.Tensor] = None, |
|
**kwargs |
|
): |
|
""" |
|
Generation method for inference. |
|
""" |
|
if images is not None and self.image_token_id is not None: |
|
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images) |
|
final_input_ids = None |
|
else: |
|
inputs_embeds = None |
|
final_input_ids = input_ids |
|
|
|
return self.language_model.generate( |
|
input_ids=final_input_ids, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
**kwargs |
|
) |
|
|
|
def save_pretrained(self, save_directory, **kwargs): |
|
""" |
|
Custom save method - saves everything in one directory. |
|
""" |
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
self.config.save_pretrained(save_directory) |
|
|
|
|
|
torch.save( |
|
self.language_model.state_dict(), |
|
os.path.join(save_directory, "language_model.bin") |
|
) |
|
|
|
|
|
self.language_model.config.save_pretrained(save_directory, config_file_name="language_model_config.json") |
|
|
|
|
|
torch.save( |
|
self.vision_projection.state_dict(), |
|
os.path.join(save_directory, "vision_projection.bin") |
|
) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
""" |
|
Custom loading method - works with your current structure. |
|
""" |
|
config = cls.config_class.from_pretrained(pretrained_model_name_or_path) |
|
model = cls(config) |
|
|
|
|
|
main_model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") |
|
if os.path.exists(main_model_path): |
|
|
|
full_state_dict = torch.load(main_model_path, map_location="cpu") |
|
|
|
|
|
language_state_dict = {} |
|
projection_state_dict = {} |
|
|
|
for key, value in full_state_dict.items(): |
|
if key.startswith("language_model."): |
|
|
|
new_key = key[len("language_model."):] |
|
language_state_dict[new_key] = value |
|
elif key.startswith("vision_projection."): |
|
|
|
new_key = key[len("vision_projection."):] |
|
projection_state_dict[new_key] = value |
|
|
|
|
|
if language_state_dict: |
|
model.language_model.load_state_dict(language_state_dict) |
|
if projection_state_dict: |
|
model.vision_projection.load_state_dict(projection_state_dict) |
|
else: |
|
|
|
language_model_path = os.path.join(pretrained_model_name_or_path, "language_model.bin") |
|
if os.path.exists(language_model_path): |
|
language_state_dict = torch.load(language_model_path, map_location="cpu") |
|
model.language_model.load_state_dict(language_state_dict) |
|
|
|
projection_path = os.path.join(pretrained_model_name_or_path, "vision_projection.bin") |
|
if os.path.exists(projection_path): |
|
projection_state_dict = torch.load(projection_path, map_location="cpu") |
|
model.vision_projection.load_state_dict(projection_state_dict) |
|
|
|
return model |
|
|
|
|
|
|
|
AutoConfig.register("multimodal_lfm2", MultimodalLFM2Config) |
|
AutoModelForCausalLM.register(MultimodalLFM2Config, MultimodalLFM2Model) |