FlameF0X commited on
Commit
93482c7
·
verified ·
1 Parent(s): 45589fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +193 -2
README.md CHANGED
@@ -5,8 +5,199 @@ language:
5
  base_model:
6
  - LiquidAI/LFM2-1.2B
7
  - openai/clip-vit-base-patch32
8
- pipeline_tag: text-generation
9
  library_name: transformers
10
  tags:
11
  - merge
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  base_model:
6
  - LiquidAI/LFM2-1.2B
7
  - openai/clip-vit-base-patch32
8
+ pipeline_tag: image-text-to-text
9
  library_name: transformers
10
  tags:
11
  - merge
12
+ datasets:
13
+ - crag-mm-2025/crag-mm-multi-turn-public
14
+ ---
15
+
16
+ # N2-Eye: Multimodal Conversational AI
17
+
18
+ N2-Eye is a multimodal language model that combines the power of LiquidAI's LFM2-1.2B language model with OpenAI's CLIP vision encoder to enable image understanding and conversation capabilities.
19
+
20
+ ## Model Details
21
+
22
+ - **Base Language Model**: LiquidAI/LFM2-1.2B (1.26B parameters)
23
+ - **Vision Encoder**: OpenAI CLIP-ViT-Base-Patch32
24
+ - **Model Type**: Image-Text-to-Text (Multimodal Conversational)
25
+ - **Training Dataset**: CRAG-MM Multi-Turn Public Dataset
26
+ - **License**: MIT
27
+ - **Framework**: PyTorch + Transformers
28
+
29
+ ## Architecture
30
+
31
+ N2-Eye uses a modular architecture that combines:
32
+
33
+ 1. **Language Model**: LFM2-1.2B for text generation and conversation
34
+ 2. **Vision Encoder**: CLIP for image understanding (frozen during training)
35
+ 3. **Projection Layer**: A trainable MLP that maps CLIP features to the language model's embedding space
36
+
37
+ The model processes images by:
38
+ - Encoding images with CLIP to extract visual features
39
+ - Projecting these features through a learnable projection layer
40
+ - Integrating projected features into the language model at special `<image>` token positions
41
+
42
+ ## Training Details
43
+
44
+ ### Dataset
45
+ - **Source**: CRAG-MM Multi-Turn Public Dataset (v0.1.1)
46
+ - **Format**: Multi-turn conversations with images
47
+ - **Preprocessing**: Conversations formatted with ChatML-style tokens
48
+
49
+ ### Training Configuration
50
+ - **Batch Size**: 2 per device (with gradient accumulation steps: 4)
51
+ - **Learning Rate**: 2e-5
52
+ - **Training Length**: 3 epoch on validation split (we got down to loss 0.703300)
53
+ - **Precision**: bfloat16
54
+ - **Max Sequence Length**: 2048 tokens
55
+ - **Optimization**: Gradient checkpointing enabled
56
+
57
+ ### Special Tokens
58
+ - `<image>`: Placeholder for image embeddings in conversation
59
+ - System prompt: "You are a helpful assistant trained by Liquid AI. You can see and understand images."
60
+
61
+ ## Usage
62
+
63
+ ### Basic Inference
64
+
65
+ ```python
66
+ # Load model directly
67
+ from transformers import AutoTokenizer, AutoModelForCausalLM
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
70
+ model = AutoModelForCausalLM.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
71
+ messages = [
72
+ {
73
+ "role": "user",
74
+ "content": [
75
+ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
76
+ {"type": "text", "text": "What animal is on the candy?"}
77
+ ]
78
+ },
79
+ ]
80
+ inputs = tokenizer.apply_chat_template(
81
+ messages,
82
+ add_generation_prompt=True,
83
+ tokenize=True,
84
+ return_dict=True,
85
+ return_tensors="pt",
86
+ ).to(model.device)
87
+
88
+ outputs = model.generate(**inputs, max_new_tokens=40)
89
+ print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
90
+ ```
91
+
92
+ ### Chat Template
93
+
94
+ N2-Eye uses an advanced ChatML-based format with support for tools and multimodal content. The model includes a sophisticated Jinja2 template that handles:
95
+
96
+ - **System prompts**: Automatically formatted with `<|im_start|>system` tags
97
+ - **Tool integration**: Special `<|tool_list_start|>` and `<|tool_list_end|>` markers for tool definitions
98
+ - **Tool responses**: Wrapped with `<|tool_response_start|>` and `<|tool_response_end|>` markers
99
+ - **Multimodal content**: JSON serialization for complex message content including images
100
+
101
+ Basic conversation format:
102
+ ```
103
+ <|im_start|>system
104
+ You are a helpful assistant trained by Liquid AI. You can see and understand images.<|im_end|>
105
+ <image>
106
+ <|im_start|>user
107
+ {user_message}<|im_end|>
108
+ <|im_start|>assistant
109
+ {assistant_response}<|im_end|>
110
+ ```
111
+
112
+ For tool-enabled conversations:
113
+ ```
114
+ <|im_start|>system
115
+ {system_prompt}
116
+ List of tools: <|tool_list_start|>[{tool_definitions}]<|tool_list_end|><|im_end|>
117
+ <|im_start|>user
118
+ {user_message}<|im_end|>
119
+ <|im_start|>assistant
120
+ {assistant_response}<|im_end|>
121
+ <|im_start|>tool
122
+ <|tool_response_start|>{tool_output}<|tool_response_end|><|im_end|>
123
+ ```
124
+
125
+ ## Capabilities
126
+
127
+ N2-Eye can:
128
+ - **Visual Understanding**: Understand and describe images in detail
129
+ - **Visual Q&A**: Answer questions about visual content
130
+ - **Multi-turn Conversations**: Engage in extended conversations that reference images
131
+ - **Tool Integration**: Support for tool calling and structured responses
132
+ - **Multimodal Reasoning**: Combine visual and textual information for comprehensive responses
133
+ - **Structured Output**: Handle complex message formats including JSON content
134
+
135
+ ## Limitations
136
+
137
+ - **Image Token Handling**: Requires specific placement of `<image>` tokens in conversation format
138
+ - **Single Image**: Currently optimized for single image per conversation
139
+ - **Training Scale**: Trained on a limited dataset (validation split only)
140
+ - **Frozen Vision**: CLIP encoder is frozen, limiting adaptation to new visual domains
141
+
142
+ ## Technical Implementation
143
+
144
+ ### Model Architecture Classes
145
+
146
+ The implementation includes several key components:
147
+
148
+ 1. **MultimodalLFM2Model**: Main model class combining language and vision
149
+ 2. **CRAGMMDataset**: Dataset handler for CRAG-MM format
150
+ 3. **MultimodalTrainer**: Custom trainer for multimodal inputs
151
+
152
+ ### Key Features
153
+
154
+ - **Gradient Checkpointing**: Memory-efficient training
155
+ - **Custom Collation**: Handles multimodal batch processing
156
+ - **Flexible Image Integration**: Dynamic matching of image features to token positions
157
+ - **Safe Serialization**: Custom saving to handle shared tensors
158
+
159
+ ## Requirements
160
+
161
+ ```
162
+ torch
163
+ transformers
164
+ datasets
165
+ Pillow
166
+ clip-by-openai
167
+ ```
168
+
169
+ ## Training Your Own Version
170
+
171
+ To retrain or fine-tune N2-Eye:
172
+
173
+ 1. Install dependencies
174
+ 2. Prepare your dataset in CRAG-MM format
175
+ 3. Modify configuration in the training script
176
+ 4. Run the training pipeline
177
+
178
+ See the included training script for complete implementation details.
179
+
180
+ ## Citation
181
+
182
+ If you use N2-Eye in your research, please cite:
183
+
184
+ ```bibtex
185
+ @misc{n2eye2025,
186
+ title={N2-Eye: Multimodal Conversational AI},
187
+ author={GoofyLM Lab},
188
+ year={2025},
189
+ publisher={Hugging Face},
190
+ howpublished={\url{https://huggingface.co/GoofyLM/N2-Eye-v1-1.3B}}
191
+ }
192
+ ```
193
+
194
+ ## Acknowledgments
195
+
196
+ - **LiquidAI** for the LFM2-1.2B base model
197
+ - **OpenAI** for the CLIP vision encoder
198
+ - **CRAG-MM** dataset contributors for training data
199
+ - **Hugging Face** for the transformers library and model hosting
200
+
201
+ ## License
202
+
203
+ This model is released under the MIT License. See the LICENSE file for details.