Create modeling_n2_eye.py
Browse files- modeling_n2_eye.py +220 -0
modeling_n2_eye.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
CLIPVisionModel,
|
7 |
+
PreTrainedModel,
|
8 |
+
PretrainedConfig,
|
9 |
+
AutoConfig,
|
10 |
+
AutoModel
|
11 |
+
)
|
12 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
|
16 |
+
class MultimodalLFM2Config(PretrainedConfig):
|
17 |
+
model_type = "multimodal_lfm2"
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
lfm2_model_name="LiquidAI/LFM2-1.2B",
|
22 |
+
clip_model_name="openai/clip-vit-base-patch32",
|
23 |
+
vision_projection_dim=512,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
self.lfm2_model_name = lfm2_model_name
|
28 |
+
self.clip_model_name = clip_model_name
|
29 |
+
self.vision_projection_dim = vision_projection_dim
|
30 |
+
|
31 |
+
|
32 |
+
class MultimodalLFM2Model(PreTrainedModel):
|
33 |
+
config_class = MultimodalLFM2Config
|
34 |
+
|
35 |
+
def __init__(self, config):
|
36 |
+
super().__init__(config)
|
37 |
+
|
38 |
+
# --- Language Model ---
|
39 |
+
self.language_model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
config.lfm2_model_name,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
trust_remote_code=True
|
43 |
+
)
|
44 |
+
|
45 |
+
# --- Vision Encoder ---
|
46 |
+
self.vision_encoder = CLIPVisionModel.from_pretrained(config.clip_model_name)
|
47 |
+
for param in self.vision_encoder.parameters():
|
48 |
+
param.requires_grad = False
|
49 |
+
|
50 |
+
# --- Projection Layer ---
|
51 |
+
self.language_hidden_size = self.language_model.config.hidden_size
|
52 |
+
self.vision_hidden_size = self.vision_encoder.config.hidden_size
|
53 |
+
self.vision_projection = nn.Sequential(
|
54 |
+
nn.Linear(self.vision_hidden_size, config.vision_projection_dim),
|
55 |
+
nn.ReLU(),
|
56 |
+
nn.Dropout(0.1),
|
57 |
+
nn.Linear(config.vision_projection_dim, self.language_hidden_size),
|
58 |
+
nn.LayerNorm(self.language_hidden_size)
|
59 |
+
)
|
60 |
+
self.image_token_id = None
|
61 |
+
|
62 |
+
def gradient_checkpointing_enable(self, **kwargs):
|
63 |
+
"""Delegates gradient checkpointing to the language model."""
|
64 |
+
self.language_model.gradient_checkpointing_enable(**kwargs)
|
65 |
+
|
66 |
+
def _prepare_multimodal_inputs(
|
67 |
+
self,
|
68 |
+
input_ids: torch.Tensor,
|
69 |
+
images: torch.Tensor
|
70 |
+
) -> torch.Tensor:
|
71 |
+
"""
|
72 |
+
Prepares input embeddings by combining text and image features.
|
73 |
+
"""
|
74 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
75 |
+
vision_outputs = self.vision_encoder(pixel_values=images)
|
76 |
+
image_features = vision_outputs.last_hidden_state
|
77 |
+
projected_image_features = self.vision_projection(image_features).to(self.language_model.dtype)
|
78 |
+
|
79 |
+
batch_size = input_ids.shape[0]
|
80 |
+
image_token_mask = (input_ids == self.image_token_id)
|
81 |
+
|
82 |
+
for i in range(batch_size):
|
83 |
+
image_positions = torch.where(image_token_mask[i])[0]
|
84 |
+
if len(image_positions) > 0:
|
85 |
+
img_feat = projected_image_features[i]
|
86 |
+
# match length
|
87 |
+
if len(image_positions) > img_feat.shape[0]:
|
88 |
+
repeat_times = (len(image_positions) + img_feat.shape[0] - 1) // img_feat.shape[0]
|
89 |
+
img_feat = img_feat.repeat(repeat_times, 1)[:len(image_positions)]
|
90 |
+
elif len(image_positions) < img_feat.shape[0]:
|
91 |
+
img_feat = img_feat[:len(image_positions)]
|
92 |
+
inputs_embeds[i, image_positions] = img_feat
|
93 |
+
|
94 |
+
return inputs_embeds
|
95 |
+
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
input_ids: torch.Tensor,
|
99 |
+
attention_mask: torch.Tensor,
|
100 |
+
images: Optional[torch.Tensor] = None,
|
101 |
+
labels: Optional[torch.Tensor] = None,
|
102 |
+
**kwargs
|
103 |
+
):
|
104 |
+
"""
|
105 |
+
Forward pass for training.
|
106 |
+
"""
|
107 |
+
if images is not None and self.image_token_id is not None:
|
108 |
+
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
|
109 |
+
final_input_ids = None
|
110 |
+
else:
|
111 |
+
inputs_embeds = None
|
112 |
+
final_input_ids = input_ids
|
113 |
+
|
114 |
+
return self.language_model(
|
115 |
+
input_ids=final_input_ids,
|
116 |
+
inputs_embeds=inputs_embeds,
|
117 |
+
attention_mask=attention_mask,
|
118 |
+
labels=labels,
|
119 |
+
return_dict=True
|
120 |
+
)
|
121 |
+
|
122 |
+
def generate(
|
123 |
+
self,
|
124 |
+
input_ids: torch.Tensor,
|
125 |
+
attention_mask: torch.Tensor,
|
126 |
+
images: Optional[torch.Tensor] = None,
|
127 |
+
**kwargs
|
128 |
+
):
|
129 |
+
"""
|
130 |
+
Generation method for inference.
|
131 |
+
"""
|
132 |
+
if images is not None and self.image_token_id is not None:
|
133 |
+
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
|
134 |
+
final_input_ids = None
|
135 |
+
else:
|
136 |
+
inputs_embeds = None
|
137 |
+
final_input_ids = input_ids
|
138 |
+
|
139 |
+
return self.language_model.generate(
|
140 |
+
input_ids=final_input_ids,
|
141 |
+
inputs_embeds=inputs_embeds,
|
142 |
+
attention_mask=attention_mask,
|
143 |
+
**kwargs
|
144 |
+
)
|
145 |
+
|
146 |
+
def save_pretrained(self, save_directory, **kwargs):
|
147 |
+
"""
|
148 |
+
Custom save method - saves everything in one directory.
|
149 |
+
"""
|
150 |
+
os.makedirs(save_directory, exist_ok=True)
|
151 |
+
|
152 |
+
# Save config
|
153 |
+
self.config.save_pretrained(save_directory)
|
154 |
+
|
155 |
+
# Save language model state dict directly
|
156 |
+
torch.save(
|
157 |
+
self.language_model.state_dict(),
|
158 |
+
os.path.join(save_directory, "language_model.bin")
|
159 |
+
)
|
160 |
+
|
161 |
+
# Save language model config
|
162 |
+
self.language_model.config.save_pretrained(save_directory, config_file_name="language_model_config.json")
|
163 |
+
|
164 |
+
# Save vision projection
|
165 |
+
torch.save(
|
166 |
+
self.vision_projection.state_dict(),
|
167 |
+
os.path.join(save_directory, "vision_projection.bin")
|
168 |
+
)
|
169 |
+
|
170 |
+
@classmethod
|
171 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
172 |
+
"""
|
173 |
+
Custom loading method - works with your current structure.
|
174 |
+
"""
|
175 |
+
config = cls.config_class.from_pretrained(pretrained_model_name_or_path)
|
176 |
+
model = cls(config)
|
177 |
+
|
178 |
+
# Try to load from pytorch_model.bin (your current structure)
|
179 |
+
main_model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
180 |
+
if os.path.exists(main_model_path):
|
181 |
+
# Load the full model state dict
|
182 |
+
full_state_dict = torch.load(main_model_path, map_location="cpu")
|
183 |
+
|
184 |
+
# Separate language model and vision projection weights
|
185 |
+
language_state_dict = {}
|
186 |
+
projection_state_dict = {}
|
187 |
+
|
188 |
+
for key, value in full_state_dict.items():
|
189 |
+
if key.startswith("language_model."):
|
190 |
+
# Remove the "language_model." prefix
|
191 |
+
new_key = key[len("language_model."):]
|
192 |
+
language_state_dict[new_key] = value
|
193 |
+
elif key.startswith("vision_projection."):
|
194 |
+
# Remove the "vision_projection." prefix
|
195 |
+
new_key = key[len("vision_projection."):]
|
196 |
+
projection_state_dict[new_key] = value
|
197 |
+
|
198 |
+
# Load the separated state dicts
|
199 |
+
if language_state_dict:
|
200 |
+
model.language_model.load_state_dict(language_state_dict)
|
201 |
+
if projection_state_dict:
|
202 |
+
model.vision_projection.load_state_dict(projection_state_dict)
|
203 |
+
else:
|
204 |
+
# Fallback to separate files
|
205 |
+
language_model_path = os.path.join(pretrained_model_name_or_path, "language_model.bin")
|
206 |
+
if os.path.exists(language_model_path):
|
207 |
+
language_state_dict = torch.load(language_model_path, map_location="cpu")
|
208 |
+
model.language_model.load_state_dict(language_state_dict)
|
209 |
+
|
210 |
+
projection_path = os.path.join(pretrained_model_name_or_path, "vision_projection.bin")
|
211 |
+
if os.path.exists(projection_path):
|
212 |
+
projection_state_dict = torch.load(projection_path, map_location="cpu")
|
213 |
+
model.vision_projection.load_state_dict(projection_state_dict)
|
214 |
+
|
215 |
+
return model
|
216 |
+
|
217 |
+
|
218 |
+
# Register the model with transformers
|
219 |
+
AutoConfig.register("multimodal_lfm2", MultimodalLFM2Config)
|
220 |
+
AutoModelForCausalLM.register(MultimodalLFM2Config, MultimodalLFM2Model)
|