File size: 85,121 Bytes
531f2d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
from __future__ import annotations
from typing import Union
from transformers import Phi3Config, Phi3Model, Phi3ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from .configuration_m3d_lamed import LamedPhi3Config
from abc import ABC, abstractmethod
from torch import Tensor
import math
from typing import Any, Dict, List
import torch
import torch.nn as nn
from typing import Optional, Tuple, Type
from monai.networks.blocks import PatchEmbed
import numpy as np
import torch.nn.functional as F

from einops import rearrange
from einops.layers.torch import Rearrange
from collections.abc import Sequence
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.blocks.transformerblock import TransformerBlock
from monai.networks.nets import ViT


class BinaryDiceLoss(nn.Module):
    def __init__(self, smooth=1, p=2, reduction='mean'):
        super(BinaryDiceLoss, self).__init__()
        self.smooth = smooth
        self.p = p
        self.reduction = reduction

    def forward(self, predict, target):
        predict = torch.sigmoid(predict)
        target_ = target.clone().float()
        target_[target == -1] = 0
        assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
        predict = predict.contiguous().view(predict.shape[0], -1)
        target_ = target_.contiguous().view(target_.shape[0], -1)

        num = torch.sum(torch.mul(predict, target_), dim=1)
        den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth

        dice_score = 2*num / den
        dice_loss = 1 - dice_score

        # dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
        dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]

        return dice_loss_avg

class BCELoss(nn.Module):
    def __init__(self):
        super(BCELoss, self).__init__()
        self.criterion = nn.BCEWithLogitsLoss()

    def forward(self, predict, target):
        assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
        target_ = target.clone()
        target_[target == -1] = 0

        ce_loss = self.criterion(predict, target_.float())

        return ce_loss



class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class MLPBlock(nn.Module):
    def __init__(

            self,

            embedding_dim: int,

            mlp_dim: int,

            act: Type[nn.Module] = nn.GELU,

    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))


class TwoWayTransformer(nn.Module):
    def __init__(

            self,

            depth: int,

            embedding_dim: int,

            num_heads: int,

            mlp_dim: int,

            activation: Type[nn.Module] = nn.ReLU,

            attention_downsample_rate: int = 2,

    ) -> None:
        """

        A transformer decoder that attends to an input image using

        queries whose positional embedding is supplied.



        Args:

          depth (int): number of layers in the transformer

          embedding_dim (int): the channel dimension for the input embeddings

          num_heads (int): the number of heads for multihead attention. Must

            divide embedding_dim

          mlp_dim (int): the channel dimension internal to the MLP block

          activation (nn.Module): the activation to use in the MLP block

        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(

            self,

            image_embedding: Tensor,

            image_pe: Tensor,

            point_embedding: Tensor,

    ) -> Tuple[Tensor, Tensor]:
        """

        Args:

          image_embedding (torch.Tensor): image to attend to. Should be shape

            B x embedding_dim x h x w for any h and w.

          image_pe (torch.Tensor): the positional encoding to add to the image. Must

            have the same shape as image_embedding.

          point_embedding (torch.Tensor): the embedding to add to the query points.

            Must have shape B x N_points x embedding_dim for any N_points.



        Returns:

          torch.Tensor: the processed point_embedding

          torch.Tensor: the processed image_embedding

        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w, d = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(

            self,

            embedding_dim: int,

            num_heads: int,

            mlp_dim: int = 2048,

            activation: Type[nn.Module] = nn.ReLU,

            attention_downsample_rate: int = 2,

            skip_first_layer_pe: bool = False,

    ) -> None:
        """

        A transformer block with four layers: (1) self-attention of sparse

        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp

        block on sparse inputs, and (4) cross attention of dense inputs to sparse

        inputs.



        Arguments:

          embedding_dim (int): the channel dimension of the embeddings

          num_heads (int): the number of heads in the attention layers

          mlp_dim (int): the hidden dimension of the mlp block

          activation (nn.Module): the activation of the mlp block

          skip_first_layer_pe (bool): skip the PE on the first layer

        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(

            self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor

    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """

    An attention layer that allows for downscaling the size of the embedding

    after projection to queries, keys, and values.

    """

    def __init__(

            self,

            embedding_dim: int,

            num_heads: int,

            downsample_rate: int = 1,

    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out



# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
    def __init__(

            self,

            img_size: int = 1024,

            patch_size: int = 16,

            in_chans: int = 1,

            embed_dim: int = 768,

            depth: int = 12,

            num_heads: int = 12,

            mlp_ratio: float = 4.0,

            out_chans: int = 256,

            qkv_bias: bool = True,

            norm_layer: Type[nn.Module] = nn.LayerNorm,

            act_layer: Type[nn.Module] = nn.GELU,

            use_abs_pos: bool = True,

            use_rel_pos: bool = False,

            rel_pos_zero_init: bool = True,

            window_size: int = 0,

            global_attn_indexes: Tuple[int, ...] = (),

    ) -> None:
        """

        Args:

            img_size (int): Input image size.

            patch_size (int): Patch size.

            in_chans (int): Number of input image channels.

            embed_dim (int): Patch embedding dimension.

            depth (int): Depth of ViT.

            num_heads (int): Number of attention heads in each ViT block.

            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

            qkv_bias (bool): If True, add a learnable bias to query, key, value.

            norm_layer (nn.Module): Normalization layer.

            act_layer (nn.Module): Activation layer.

            use_abs_pos (bool): If True, use absolute positional embeddings.

            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.

            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.

            window_size (int): Window size for window attention blocks.

            global_attn_indexes (list): Indexes for blocks using global attention.

        """
        super().__init__()
        self.img_size = img_size

        # self.patch_embed = PatchEmbed(
        #     kernel_size=(patch_size, patch_size),
        #     stride=(patch_size, patch_size),
        #     in_chans=in_chans,
        #     embed_dim=embed_dim,
        # )

        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            spatial_dims=3,
        )

        self.pos_embed: Optional[nn.Parameter] = None
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
            )

        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                norm_layer=norm_layer,
                act_layer=act_layer,
                use_rel_pos=use_rel_pos,
                rel_pos_zero_init=rel_pos_zero_init,
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=(img_size // patch_size, img_size // patch_size),
            )
            self.blocks.append(block)

        self.neck = nn.Sequential(
            nn.Conv2d(
                embed_dim,
                out_chans,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
            nn.Conv2d(
                out_chans,
                out_chans,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        print('patch embedded shape: ', x.shape)  # embedded: [8, 768, 6, 6, 6]
        if self.pos_embed is not None:
            x = x + self.pos_embed

        for blk in self.blocks:
            x = blk(x)

        x = self.neck(x.permute(0, 3, 1, 2))

        return x


class Block(nn.Module):
    """Transformer blocks with support of window attention and residual propagation blocks"""

    def __init__(

            self,

            dim: int,

            num_heads: int,

            mlp_ratio: float = 4.0,

            qkv_bias: bool = True,

            norm_layer: Type[nn.Module] = nn.LayerNorm,

            act_layer: Type[nn.Module] = nn.GELU,

            use_rel_pos: bool = False,

            rel_pos_zero_init: bool = True,

            window_size: int = 0,

            input_size: Optional[Tuple[int, int]] = None,

    ) -> None:
        """

        Args:

            dim (int): Number of input channels.

            num_heads (int): Number of attention heads in each ViT block.

            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

            qkv_bias (bool): If True, add a learnable bias to query, key, value.

            norm_layer (nn.Module): Normalization layer.

            act_layer (nn.Module): Activation layer.

            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.

            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.

            window_size (int): Window size for window attention blocks. If it equals 0, then

                use global attention.

            input_size (tuple(int, int) or None): Input resolution for calculating the relative

                positional parameter size.

        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention2(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            input_size=input_size if window_size == 0 else (window_size, window_size),
        )

        self.norm2 = norm_layer(dim)
        self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)

        self.window_size = window_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        x = self.attn(x)
        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        x = shortcut + x
        x = x + self.mlp(self.norm2(x))

        return x


class Attention2(nn.Module):
    """Multi-head Attention block with relative position embeddings."""

    def __init__(

            self,

            dim: int,

            num_heads: int = 8,

            qkv_bias: bool = True,

            use_rel_pos: bool = False,

            rel_pos_zero_init: bool = True,

            input_size: Optional[Tuple[int, int]] = None,

    ) -> None:
        """

        Args:

            dim (int): Number of input channels.

            num_heads (int): Number of attention heads.

            qkv_bias (bool):  If True, add a learnable bias to query, key, value.

            rel_pos (bool): If True, add relative positional embeddings to the attention map.

            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.

            input_size (tuple(int, int) or None): Input resolution for calculating the relative

                positional parameter size.

        """
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert (
                    input_size is not None
            ), "Input size must be provided if using relative positional encoding."
            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape
        # qkv with shape (3, B, nHead, H * W, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        # q, k, v with shape (B * nHead, H * W, C)
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)

        attn = (q * self.scale) @ k.transpose(-2, -1)

        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

        attn = attn.softmax(dim=-1)
        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
        x = self.proj(x)

        return x


def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
    """

    Partition into non-overlapping windows with padding if needed.

    Args:

        x (tensor): input tokens with [B, H, W, C].

        window_size (int): window size.



    Returns:

        windows: windows after partition with [B * num_windows, window_size, window_size, C].

        (Hp, Wp): padded height and width before partition

    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(

        windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]

) -> torch.Tensor:
    """

    Window unpartition into original sequences and removing padding.

    Args:

        windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].

        window_size (int): window size.

        pad_hw (Tuple): padded height and width (Hp, Wp).

        hw (Tuple): original height and width (H, W) before padding.



    Returns:

        x: unpartitioned sequences with [B, H, W, C].

    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
    """

    Get relative positional embeddings according to the relative positions of

        query and key sizes.

    Args:

        q_size (int): size of query q.

        k_size (int): size of key k.

        rel_pos (Tensor): relative position embeddings (L, C).



    Returns:

        Extracted positional embeddings according to relative positions.

    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(

        attn: torch.Tensor,

        q: torch.Tensor,

        rel_pos_h: torch.Tensor,

        rel_pos_w: torch.Tensor,

        q_size: Tuple[int, int],

        k_size: Tuple[int, int],

) -> torch.Tensor:
    """

    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.

    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950

    Args:

        attn (Tensor): attention map.

        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).

        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.

        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.

        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).

        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).



    Returns:

        attn (Tensor): attention map with added relative positional embeddings.

    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
            attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn


class PromptEncoder(nn.Module):
    def __init__(

            self,

            embed_dim: int,

            image_embedding_size: Tuple[int, int, int],

            input_image_size: Tuple[int, int, int],

            mask_in_chans: int,

            activation: Type[nn.Module] = nn.GELU,

    ) -> None:
        """

        Encodes prompts for input to SAM's mask decoder.



        Arguments:

          embed_dim (int): The prompts' embedding dimension

          image_embedding_size (tuple(int, int)): The spatial size of the

            image embedding, as (H, W).

          input_image_size (int): The padded size of the image as input

            to the image encoder, as (H, W).

          mask_in_chans (int): The number of hidden channels used for

            encoding input masks.

          activation (nn.Module): The activation to use when encoding

            input masks.

        """
        super().__init__()
        self.embed_dim = embed_dim
        self.input_image_size = input_image_size
        self.image_embedding_size = image_embedding_size
        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)

        self.num_point_embeddings: int = 4  # pos/neg point + 2 box corners
        point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
        self.point_embeddings = nn.ModuleList(point_embeddings)
        self.not_a_point_embed = nn.Embedding(1, embed_dim)

        self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
        self.mask_downscaling = nn.Sequential(
            nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans // 4),
            activation(),
            nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans),
            activation(),
            nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
        )
        self.no_mask_embed = nn.Embedding(1, embed_dim)

    def get_dense_pe(self) -> torch.Tensor:
        """

        Returns the positional encoding used to encode point prompts,

        applied to a dense set of points the shape of the image encoding.



        Returns:

          torch.Tensor: Positional encoding with shape

            1x(embed_dim)x(embedding_h)x(embedding_w)

        """
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

    def _embed_points(

            self,

            points: torch.Tensor,

            labels: torch.Tensor,

            pad: bool,

    ) -> torch.Tensor:
        """Embeds point prompts."""
        points = points + 0.5  # Shift to center of pixel
        if pad:
            padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
            points = torch.cat([points, padding_point], dim=1)
            labels = torch.cat([labels, padding_label], dim=1)
        point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
        point_embedding[labels == -1] = 0.0
        point_embedding[labels == -1] += self.not_a_point_embed.weight
        point_embedding[labels == 0] += self.point_embeddings[0].weight
        point_embedding[labels == 1] += self.point_embeddings[1].weight
        return point_embedding

    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
        """Embeds box prompts."""
        boxes = boxes + 0.5  # Shift to center of pixel
        coords = boxes.reshape(-1, 2, 3)
        corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
        return corner_embedding

    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
        """Embeds mask inputs."""
        mask_embedding = self.mask_downscaling(masks)
        return mask_embedding

    def _get_batch_size(

            self,

            points: Optional[Tuple[torch.Tensor, torch.Tensor]],

            boxes: Optional[torch.Tensor],

            masks: Optional[torch.Tensor],

            text_embedding: Optional[torch.Tensor],

    ) -> int:
        """

        Gets the batch size of the output given the batch size of the input prompts.

        """
        if points is not None:
            return points[0].shape[0]
        elif boxes is not None:
            return boxes.shape[0]
        elif masks is not None:
            return masks.shape[0]
        elif text_embedding is not None:
            return text_embedding.shape[0]
        else:
            return 1

    def _get_device(self) -> torch.device:
        return self.point_embeddings[0].weight.device

    def forward(

            self,

            points: Optional[Tuple[torch.Tensor, torch.Tensor]],

            boxes: Optional[torch.Tensor],

            masks: Optional[torch.Tensor],

            text_embedding: Optional[torch.Tensor],

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Embeds different types of prompts, returning both sparse and dense

        embeddings.



        Arguments:

          points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates

            and labels to embed.

          boxes (torch.Tensor or none): boxes to embed

          masks (torch.Tensor or none): masks to embed

          text: test prompt (B, 768)



        Returns:

          torch.Tensor: sparse embeddings for the points and boxes, with shape

            BxNx(embed_dim), where N is determined by the number of input points

            and boxes.

          torch.Tensor: dense embeddings for the masks, in the shape

            Bx(embed_dim)x(embed_H)x(embed_W)

        """
        # print('prompt encoder here...')

        bs = self._get_batch_size(points, boxes, masks, text_embedding)
        sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device(),
                                        dtype=self.point_embeddings[0].weight.dtype)
        # print('sparse_embeddings ', sparse_embeddings.shape)
        if points is not None:
            coords, labels = points
            point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)

        if boxes is not None:
            box_embeddings = self._embed_boxes(boxes)
            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)

        if text_embedding is not None:
            sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)

        # print('box_embeddings ', box_embeddings.shape)
        # print('sparse_embeddings after box/point/text', sparse_embeddings.shape)

        if masks is not None:
            dense_embeddings = self._embed_masks(masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
                bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]),
                int(self.image_embedding_size[2])
            )
        return sparse_embeddings, dense_embeddings


class PositionEmbeddingRandom(nn.Module):
    """

    Positional encoding using random spatial frequencies.

    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer(
            "positional_encoding_gaussian_matrix",
            scale * torch.randn((3, num_pos_feats)),
        )

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
        """Generate positional encoding for a grid of the specified size."""
        h, w, d = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        dtype = self.positional_encoding_gaussian_matrix.dtype
        grid = torch.ones((h, w, d), device=device, dtype=dtype)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        z_embed = grid.cumsum(dim=2) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w
        z_embed = z_embed / d

        pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
        return pe.permute(3, 0, 1, 2)  # C x H x W x D

    def forward_with_coords(

            self, coords_input: torch.Tensor, image_size: Tuple[int, int]

    ) -> torch.Tensor:
        """Positionally encode points that are not normalized to [0,1]."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        coords[:, :, 2] = coords[:, :, 2] / image_size[2]
        return self._pe_encoding(coords.to(torch.float))  # B x N x C


class MaskDecoder(nn.Module):
    def __init__(

            self,

            *,

            image_encoder_type: str,

            transformer_dim: int,

            transformer: nn.Module,

            num_multimask_outputs: int = 3,

            activation: Type[nn.Module] = nn.GELU,

            iou_head_depth: int = 3,

            iou_head_hidden_dim: int = 256,

            image_size,

            patch_size,

    ) -> None:
        """

        Predicts masks given an image and prompt embeddings, using a

        transformer architecture.



        Arguments:

          transformer_dim (int): the channel dimension of the transformer

          transformer (nn.Module): the transformer used to predict masks

          num_multimask_outputs (int): the number of masks to predict

            when disambiguating masks

          activation (nn.Module): the type of activation to use when

            upscaling masks

          iou_head_depth (int): the depth of the MLP used to predict

            mask quality

          iou_head_hidden_dim (int): the hidden dimension of the MLP

            used to predict mask quality

        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        if image_encoder_type == 'swin_vit':
            self.feat_shape = image_size / patch_size
            self.output_upscaling = nn.Sequential(
                nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                nn.LayerNorm(
                    (transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
                # swin
                activation(),
                nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),  # swin
                # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),    # vit
                activation(),
            )
        else:
            self.feat_shape = image_size / patch_size * 2
            self.output_upscaling = nn.Sequential(
                nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                nn.LayerNorm(
                    (transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
                # vit
                activation(),
                nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
                activation(),
            )
        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )

        self.iou_prediction_head = MLP(
            transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
        )

        self.txt_align_upscaled_embedding = nn.Linear(768, 96)

    def forward(

            self,

            image_embeddings: torch.Tensor,

            text_embedding: Optional[torch.Tensor],

            image_pe: torch.Tensor,

            sparse_prompt_embeddings: torch.Tensor,

            dense_prompt_embeddings: torch.Tensor,

            multimask_output: bool,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Predict masks given image and prompt embeddings.



        Arguments:

          image_embeddings (torch.Tensor): the embeddings from the image encoder

          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings

          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes

          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs

          multimask_output (bool): Whether to return multiple masks or a single

            mask.



        Returns:

          torch.Tensor: batched predicted masks

          torch.Tensor: batched predictions of mask quality

        """
        # print('--------------decoder here--------------')
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,
            text_embedding=text_embedding,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
        )

        # Select the correct mask or masks for output
        if multimask_output:
            mask_slice = slice(1, None)
        else:
            mask_slice = slice(0, 1)
        masks = masks[:, mask_slice, :, :, :]
        iou_pred = iou_pred[:, mask_slice]

        # Prepare output
        return masks, iou_pred

    def predict_masks(

            self,

            image_embeddings: torch.Tensor,

            text_embedding: torch.Tensor,

            image_pe: torch.Tensor,

            sparse_prompt_embeddings: torch.Tensor,

            dense_prompt_embeddings: torch.Tensor,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        # Concatenate output tokens
        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [2, 7=(5+2), 256]
        # Expand per-image data in batch direction to be per-mask
        if image_embeddings.shape[0] != tokens.shape[0]:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            src = image_embeddings

        src = src + dense_prompt_embeddings
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w, d = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, 0, :]
        mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w, d)
        # print('src ', src.shape) # vit:[B, 768, 12, 12, 6], swin: [B, 6, 6, 3]
        upscaled_embedding = self.output_upscaling(src)
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w, d = upscaled_embedding.shape
        # print('hyper_in ', hyper_in.shape)    # [2, 4, 96]
        # print('upscaled_embedding ', upscaled_embedding.shape)    # [2, 96, 24, 24, 12]*
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
        # print('masks here ', masks.shape) # [2, 4, 24, 24, 12]

        if text_embedding is not None:
            # text_embedding: B x 768, upscaled_embedding: B x c x h x w x d => B x 1 x h x w x d
            text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
            upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
            # print('text_embedding_down ', text_embedding_down.shape)  # [2, 1, 96]
            # text_embedding_norm = F.normalize(text_embedding_down, dim=-1)
            # upscaled_embedding_norm = F.normalize(upscaled_embedding, dim=1)
            # sim = (text_embedding_norm @ upscaled_embedding_norm).view(b, -1, h, w, d)
            # print(text_embedding_down.shape, upscaled_embedding.shape)
            sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
            # print('sim ', sim.shape)  # [B, 1, 24, 24, 12]
            sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
            # print('sim after', sim.shape) # [B, 4, 24, 24, 12]
            masks = masks + sim
        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred


# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
    def __init__(

            self,

            input_dim: int,

            hidden_dim: int,

            output_dim: int,

            num_layers: int,

            sigmoid_output: bool = False,

    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x


class Sam(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = "RGB"

    def __init__(

            self,

            image_encoder: ImageEncoderViT,

            prompt_encoder: PromptEncoder,

            mask_decoder: MaskDecoder,

            pixel_mean: List[float] = [123.675, 116.28, 103.53],

            pixel_std: List[float] = [58.395, 57.12, 57.375],

    ) -> None:
        """

        SAM predicts object masks from an image and input prompts.



        Arguments:

          image_encoder (ImageEncoderViT): The backbone used to encode the

            image into image embeddings that allow for efficient mask prediction.

          prompt_encoder (PromptEncoder): Encodes various types of input prompts.

          mask_decoder (MaskDecoder): Predicts masks from the image embeddings

            and encoded prompts.

          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.

          pixel_std (list(float)): Std values for normalizing pixels in the input image.

        """
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

    @property
    def device(self) -> Any:
        return self.pixel_mean.device

    @torch.no_grad()
    def forward(

            self,

            batched_input: List[Dict[str, Any]],

            multimask_output: bool,

    ) -> List[Dict[str, torch.Tensor]]:
        """

        Predicts masks end-to-end from provided images and prompts.

        If prompts are not known in advance, using SamPredictor is

        recommended over calling the model directly.



        Arguments:

          batched_input (list(dict)): A list over input images, each a

            dictionary with the following keys. A prompt key can be

            excluded if it is not present.

              'image': The image as a torch tensor in 3xHxW format,

                already transformed for input to the model.

              'original_size': (tuple(int, int)) The original size of

                the image before transformation, as (H, W).

              'point_coords': (torch.Tensor) Batched point prompts for

                this image, with shape BxNx2. Already transformed to the

                input frame of the model.

              'point_labels': (torch.Tensor) Batched labels for point prompts,

                with shape BxN.

              'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.

                Already transformed to the input frame of the model.

              'mask_inputs': (torch.Tensor) Batched mask inputs to the model,

                in the form Bx1xHxW.

          multimask_output (bool): Whether the model should predict multiple

            disambiguating masks, or return a single mask.



        Returns:

          (list(dict)): A list over input images, where each element is

            as dictionary with the following keys.

              'masks': (torch.Tensor) Batched binary mask predictions,

                with shape BxCxHxW, where B is the number of input prompts,

                C is determined by multimask_output, and (H, W) is the

                original size of the image.

              'iou_predictions': (torch.Tensor) The model's predictions

                of mask quality, in shape BxC.

              'low_res_logits': (torch.Tensor) Low resolution logits with

                shape BxCxHxW, where H=W=256. Can be passed as mask input

                to subsequent iterations of prediction.

        """
        input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
        image_embeddings = self.image_encoder(input_images)

        outputs = []
        for image_record, curr_embedding in zip(batched_input, image_embeddings):
            if "point_coords" in image_record:
                points = (image_record["point_coords"], image_record["point_labels"])
            else:
                points = None
            sparse_embeddings, dense_embeddings = self.prompt_encoder(
                points=points,
                boxes=image_record.get("boxes", None),
                masks=image_record.get("mask_inputs", None),
            )
            low_res_masks, iou_predictions = self.mask_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            masks = self.postprocess_masks(
                low_res_masks,
                input_size=image_record["image"].shape[-2:],
                original_size=image_record["original_size"],
            )
            masks = masks > self.mask_threshold
            outputs.append(
                {
                    "masks": masks,
                    "iou_predictions": iou_predictions,
                    "low_res_logits": low_res_masks,
                }
            )
        return outputs

    def postprocess_masks(

            self,

            masks: torch.Tensor,

            input_size: Tuple[int, ...],

            original_size: Tuple[int, ...],

    ) -> torch.Tensor:
        """

        Remove padding and upscale masks to the original image size.



        Arguments:

          masks (torch.Tensor): Batched masks from the mask_decoder,

            in BxCxHxW format.

          input_size (tuple(int, int)): The size of the image input to the

            model, in (H, W) format. Used to remove padding.

          original_size (tuple(int, int)): The original size of the image

            before resizing for input to the model, in (H, W) format.



        Returns:

          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)

            is given by original_size.

        """
        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode="bilinear",
            align_corners=False,
        )
        masks = masks[..., : input_size[0], : input_size[1]]
        masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
        return masks

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        # TODO
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x


"""

Examples::

            # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.

            >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)

            # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.

            >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))

            # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.

            >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)

"""


def build_sam_vit_3d(args, checkpoint=None):
    print('build_sam_vit_3d...')
    return _build_sam(
        image_encoder_type='vit',
        embed_dim=768,
        patch_size=args.patch_size,
        checkpoint=checkpoint,
        image_size=args.image_size,
    )


sam_model_registry = {
    "vit": build_sam_vit_3d,
}


def _build_sam(

        image_encoder_type,

        embed_dim,

        patch_size,

        checkpoint,

        image_size,

):
    mlp_dim = 3072
    num_layers = 12
    num_heads = 12
    pos_embed = 'perceptron'
    dropout_rate = 0.0

    image_encoder = ViT(
        in_channels=1,
        img_size=image_size,
        patch_size=patch_size,
        hidden_size=embed_dim,
        mlp_dim=mlp_dim,
        num_layers=num_layers,
        num_heads=num_heads,
        pos_embed=pos_embed,
        classification=False,
        dropout_rate=dropout_rate,
    )
    image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]

    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f, map_location='cpu')['state_dict']
            encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
        image_encoder.load_state_dict(encoder_dict)
        print(f'===> image_encoder.load_param: {checkpoint}')
    sam = Sam(
        image_encoder=image_encoder,
        prompt_encoder=PromptEncoder(
            embed_dim=embed_dim,
            image_embedding_size=image_embedding_size,
            input_image_size=image_size,
            mask_in_chans=16,
        ),
        mask_decoder=MaskDecoder(
            image_encoder_type=image_encoder_type,
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            image_size=np.array(image_size),
            patch_size=np.array(patch_size),
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    sam.eval()
    return sam

class SegVol(nn.Module):
    def __init__(self,

                image_encoder,

                mask_decoder,

                prompt_encoder,

                roi_size,

                patch_size,

                ):
        super().__init__()
        self.image_encoder = image_encoder
        self.mask_decoder = mask_decoder
        self.prompt_encoder = prompt_encoder
        self.feat_shape = np.array(roi_size)/np.array(patch_size)

    def forward(self, image, text_emb=None, text=None, boxes=None, points=None):
        bs = image.shape[0]
        img_shape = (image.shape[2], image.shape[3], image.shape[4])
        image_embedding, _ = self.image_encoder(image)

        image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
            int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))

        logits = self.forward_decoder(image_embedding, img_shape, text_emb=text_emb, text=text, boxes=boxes, points=points)

        return logits

    def forward_decoder(self, image_embedding, img_shape, text_emb=None, text=None, boxes=None, points=None):
        text_embedding = text_emb
        sparse_embeddings, dense_embeddings = self.prompt_encoder(
            points=None,
            boxes=None,
            masks=None,
            text_embedding=text_embedding,
        )

        dense_pe = self.prompt_encoder.get_dense_pe()

        low_res_masks, _ = self.mask_decoder(
            image_embeddings=image_embedding,
            text_embedding = text_embedding,
            image_pe=dense_pe,
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=False,
          )
        logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)

        return logits


def build_segmentation_module(config, **kwargs):
    segmentation_module = getattr(config, 'segmentation_module')
    if 'segvol' in segmentation_module.lower():
        sam_model = sam_model_registry['vit'](args=config, checkpoint=None)
        seg_model = SegVol(
            image_encoder=sam_model.image_encoder,
            mask_decoder=sam_model.mask_decoder,
            prompt_encoder=sam_model.prompt_encoder,
            roi_size=config.image_size,
            patch_size=config.patch_size,
        )
        return seg_model
    else:
        raise ValueError(f'Unknown segmentation module: {segmentation_module}')


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}



class SpatialPoolingProjector(nn.Module):
    def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
        super().__init__()
        self.in_dim = in_dim
        self.pooling_size = pooling_size

        self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
        self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]

        if layer_type == 'linear':
            depth = int(layer_num)
            modules = [nn.Linear(in_dim, out_dim)]
            for _ in range(1, depth):
                modules.append(nn.Linear(out_dim, out_dim))
            self.projector = nn.Sequential(*modules)
        elif layer_type == 'mlp':
            depth = int(layer_num)
            modules = [nn.Linear(in_dim, out_dim)]
            for _ in range(1, depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(out_dim, out_dim))
            self.projector = nn.Sequential(*modules)
        else:
            print("Projector error!")

        self.pooling_type = pooling_type

    def forward(self, x):
        B = x.shape[0] # B*N*D

        if self.pooling_type == 'spatial':
            to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
            x = to_3d(x)
            x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
            to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
            x = to_seq(x)
        elif self.pooling_type == 'sequence':
            x = x.permute(0, 2, 1) #b d n
            x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
            x = x.permute(0, 2, 1) #b n d

        x = rearrange(x, "b n d -> (b n) d")
        x = self.projector(x)
        x = rearrange(x, "(b n) d -> b n d", b=B)

        return x

    @property
    def proj_out_num(self):
        num = 1
        for n in self.num_patches_post:
            num *= n
        return num


class Minigpt(nn.Module):
    def __init__(self, config=None):
        super(Minigpt, self).__init__()
        # c*4 is the input size, and c is the output size for the linear layer
        inc, ouc = config.mm_hidden_size, config.hidden_size
        self.linear = nn.Linear(inc * 4, ouc)

    def forward(self, x):
        # x is the input tensor with shape [b, num_tokens, c]
        b, num_tokens, c = x.shape

        # Check if num_tokens is divisible by 4
        if num_tokens % 4 != 0:
            raise ValueError("num_tokens must be divisible by 4")

        # Reshape x to [b, num_tokens/4, c*4]
        x = x.view(b, num_tokens // 4, c * 4)

        # Apply the linear transformation
        x = self.linear(x)
        return x


class Vanilla(nn.Module):
    def __init__(self, config=None):
        super(Vanilla, self).__init__()
        # c*4 is the input size, and c is the output size for the linear layer
        inc, ouc = config.mm_hidden_size, config.hidden_size
        self.linear = nn.Linear(inc * 4, ouc)

    def forward(self, x):
        b, num_tokens, c = x.shape

        # Check if num_tokens is divisible by 4
        if num_tokens % 4 != 0:
            raise ValueError("num_tokens must be divisible by 4")

        # First, reshape to [b, num_tokens//4, 4, c]
        x = x.view(b, num_tokens // 4, 4, c)

        # Then, permute to interleave the tokens
        x = x.permute(0, 1, 3, 2).contiguous()

        # Finally, reshape to [b, num_tokens//4, c*4] to interleave features of 4 tokens
        x = x.view(b, num_tokens // 4, c * 4)

        # Apply the linear transformation
        x = self.linear(x)
        return x


def build_mm_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)


    elif projector_type == 'spp':
        return SpatialPoolingProjector(image_size=config.image_size,
                                        patch_size=config.patch_size,
                                        in_dim=config.mm_hidden_size,
                                        out_dim=config.hidden_size,
                                        layer_type=config.proj_layer_type,
                                        layer_num=config.proj_layer_num,
                                        pooling_type=config.proj_pooling_type,
                                        pooling_size=config.proj_pooling_size)


    elif projector_type == 'identity':
        return IdentityMap()
    else:
        raise ValueError(f'Unknown projector type: {projector_type}')



class myViT(nn.Module):
    """

    Vision Transformer (ViT), based on: "Dosovitskiy et al.,

    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"



    ViT supports Torchscript but only works for Pytorch after 1.8.

    """

    def __init__(

        self,

        in_channels: int,

        img_size: Sequence[int] | int,

        patch_size: Sequence[int] | int,

        hidden_size: int = 768,

        mlp_dim: int = 3072,

        num_layers: int = 12,

        num_heads: int = 12,

        pos_embed: str = "conv",

        classification: bool = False,

        num_classes: int = 2,

        dropout_rate: float = 0.0,

        spatial_dims: int = 3,

        post_activation="Tanh",

        qkv_bias: bool = False,

        save_attn: bool = False,

    ) -> None:
        """

        Args:

            in_channels (int): dimension of input channels.

            img_size (Union[Sequence[int], int]): dimension of input image.

            patch_size (Union[Sequence[int], int]): dimension of patch size.

            hidden_size (int, optional): dimension of hidden layer. Defaults to 768.

            mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.

            num_layers (int, optional): number of transformer blocks. Defaults to 12.

            num_heads (int, optional): number of attention heads. Defaults to 12.

            pos_embed (str, optional): position embedding layer type. Defaults to "conv".

            classification (bool, optional): bool argument to determine if classification is used. Defaults to False.

            num_classes (int, optional): number of classes if classification is used. Defaults to 2.

            dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.

            spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.

            post_activation (str, optional): add a final acivation function to the classification head

                when `classification` is True. Default to "Tanh" for `nn.Tanh()`.

                Set to other values to remove this function.

            qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.

            save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.



        Examples::



            # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone

            >>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')



            # for 3-channel with image size of (128,128,128), 24 layers and classification backbone

            >>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)



            # for 3-channel with image size of (224,224), 12 layers and classification backbone

            >>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)



        """

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise ValueError("dropout_rate should be between 0 and 1.")

        if hidden_size % num_heads != 0:
            raise ValueError("hidden_size should be divisible by num_heads.")
        self.hidden_size = hidden_size
        self.classification = classification
        self.patch_embedding = PatchEmbeddingBlock(
            in_channels=in_channels,
            img_size=img_size,
            patch_size=patch_size,
            hidden_size=hidden_size,
            num_heads=num_heads,
            pos_embed=pos_embed,
            dropout_rate=dropout_rate,
            spatial_dims=spatial_dims,
        )
        self.blocks = nn.ModuleList(
            [
                TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
                for i in range(num_layers)
            ]
        )
        self.norm = nn.LayerNorm(hidden_size)
        if self.classification:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
            # if post_activation == "Tanh":
            #     self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
            # else:
            #     self.classification_head = nn.Linear(hidden_size, num_classes)  # type: ignore

    def forward(self, x):
        x = self.patch_embedding(x)
        if hasattr(self, "cls_token"):
            cls_token = self.cls_token.expand(x.shape[0], -1, -1)
            x = torch.cat((cls_token, x), dim=1)
        hidden_states_out = []
        for blk in self.blocks:
            x = blk(x)
            hidden_states_out.append(x)
        x = self.norm(x)
        # if hasattr(self, "classification_head"):
        #     x = self.classification_head(x[:, 0])
        return x, hidden_states_out


class ViT3DTower(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.select_layer = config.vision_select_layer
        self.select_feature = config.vision_select_feature

        self.vision_tower = myViT(
            in_channels=self.config.image_channel,
            img_size=self.config.image_size,
            patch_size=self.config.patch_size,
            pos_embed="perceptron",
            spatial_dims=len(self.config.patch_size),
            classification=True,
        )

    def forward(self, images):
        last_feature, hidden_states = self.vision_tower(images)
        if self.select_layer == -1:
            image_features = last_feature
        elif self.select_layer < -1:
            image_features = hidden_states[self.select_feature]
        else:
            raise ValueError(f'Unexpected select layer: {self.select_layer}')

        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')

        return image_features

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def hidden_size(self):
        return self.vision_tower.hidden_size


def build_vision_tower(config, **kwargs):
    vision_tower = getattr(config, 'vision_tower', None)
    if 'vit3d' in vision_tower.lower():
        return ViT3DTower(config, **kwargs)
    else:
        raise ValueError(f'Unknown vision tower: {vision_tower}')

class LamedMetaModel:
    def __init__(self, config):
        super(LamedMetaModel, self).__init__(config)

        self.config = config
        self.seg_enable = False

        if hasattr(config, "vision_tower"):
            self.vision_tower = build_vision_tower(config)
            self.mm_projector = build_mm_projector(config)

        if hasattr(config, "segmentation_module") and config.segmentation_module is not None:
            self.seg_enable = True
            self.seg_module = build_segmentation_module(config)

            self.seg_projector = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.ReLU(inplace=True),
                nn.Linear(config.hidden_size, config.mm_hidden_size),
                nn.Dropout(0.1),
            )

            self.dice_loss = BinaryDiceLoss()
            self.bce_loss = BCELoss()

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        return vision_tower

    def initialize_vision_modules(self, model_args):
        self.config.image_channel = model_args.image_channel
        self.config.image_size = model_args.image_size
        self.config.patch_size = model_args.patch_size

        self.config.vision_tower = model_args.vision_tower
        self.config.vision_select_layer = model_args.vision_select_layer
        self.config.vision_select_feature = model_args.vision_select_feature

        self.config.mm_projector_type = model_args.mm_projector_type
        self.config.proj_layer_type = model_args.proj_layer_type
        self.config.proj_layer_num = model_args.proj_layer_num
        self.config.proj_pooling_type = model_args.proj_pooling_type
        self.config.proj_pooling_size = model_args.proj_pooling_size

        # vision tower
        if self.get_vision_tower() is None:
            self.vision_tower = build_vision_tower(self.config)
            # If you have a more robust vision encoder, try freezing the vision tower by requires_grad_(False)


        if model_args.pretrain_vision_model is not None:
            vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
            self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)

        self.config.mm_hidden_size = self.vision_tower.hidden_size

        # mm_projector
        if getattr(self, 'mm_projector', None) is None:
            self.mm_projector = build_mm_projector(self.config)

        if model_args.pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)

    def initialize_seg_modules(self, model_args):
        self.config.segmentation_module = model_args.segmentation_module

        # segmentation_module
        if getattr(self, 'segmentation_module', None) is None:
            self.seg_module = build_segmentation_module(self.config)
            self.seg_projector = nn.Sequential(
                nn.Linear(self.config.hidden_size, self.config.hidden_size),
                nn.ReLU(inplace=True),
                nn.Linear(self.config.hidden_size, self.config.mm_hidden_size),
                nn.Dropout(0.1),
            )
            self.seg_enable = True

        if model_args.pretrain_seg_module is not None:
            seg_module_weights = torch.load(model_args.pretrain_seg_module, map_location='cpu')
            self.seg_module.load_state_dict(seg_module_weights, strict=True)

        self.dice_loss = BinaryDiceLoss()
        self.bce_loss = BCELoss()

class LamedMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def prepare_inputs_for_multimodal(

        self, input_ids, position_ids, attention_mask, past_key_values, labels,

        images,

    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels
        else:
            image_features = self.encode_images(images)
            inputs_embeds = self.get_model().embed_tokens(input_ids)
            inputs_embeds = torch.cat(
                (inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
        return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        num_new_tokens = model_args.num_new_tokens

        self.resize_token_embeddings(len(tokenizer))

        if num_new_tokens > 0:
            input_embeddings = self.get_input_embeddings().weight.data
            output_embeddings = self.get_output_embeddings().weight.data

            input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                dim=0, keepdim=True)
            output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                dim=0, keepdim=True)

            input_embeddings[-num_new_tokens:] = input_embeddings_avg
            output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False
            else:
                # we add 4 new tokens
                # if new tokens need input, please train input_embeddings
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                # if new tokens need predict, please train output_embeddings
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = True

        if model_args.pretrain_mm_mlp_adapter:
            mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
            embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']

            if input_embeddings.shape == embed_tokens_weight.shape:
                input_embeddings = embed_tokens_weight
            elif embed_tokens_weight.shape[0] == num_new_tokens:
                input_embeddings[-num_new_tokens:] = embed_tokens_weight
            else:
                raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")



class LamedPhi3Model(LamedMetaModel, Phi3Model):
    config_class = LamedPhi3Config
    def __init__(self, config: Phi3Config):
        super(LamedPhi3Model, self).__init__(config)


class LamedPhi3ForCausalLM(LamedMetaForCausalLM, Phi3ForCausalLM):
    config_class = LamedPhi3Config

    def __init__(self, config):
        super(LamedPhi3ForCausalLM, self).__init__(config)
        self.model = LamedPhi3Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(

            self,

            images: Optional[torch.FloatTensor] = None,

            input_ids: torch.LongTensor = None,

            labels: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.Tensor] = None,

            segs: Optional[torch.FloatTensor] = None,



            position_ids: Optional[torch.LongTensor] = None,

            past_key_values: Optional[List[torch.FloatTensor]] = None,

            inputs_embeds: Optional[torch.FloatTensor] = None,

            use_cache: Optional[bool] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            return_dict: Optional[bool] = None,

            cache_position: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:

        input_ids_pre = input_ids

        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
            )

        try:
            seg_ids = torch.nonzero(torch.sum(segs, dim=(1, 2, 3, 4))).flatten().tolist()
        except:
            seg_ids = []

        if self.get_model().seg_enable and seg_ids:
            outputs = super().forward(
                                    input_ids=input_ids,
                                    inputs_embeds=inputs_embeds,
                                    attention_mask=attention_mask,
                                    labels=labels,
                                    output_hidden_states=True,

                                    position_ids=position_ids,
                                    past_key_values=past_key_values,
                                    use_cache=use_cache,
                                    output_attentions=output_attentions,
                                    return_dict=return_dict
                                )

            output_hidden_states = outputs.hidden_states

            last_hidden_state = output_hidden_states[-1]

            seg_token_mask = input_ids_pre[:, 1:] == self.config.seg_token_id
            seg_token_mask = torch.cat(
                [
                    seg_token_mask,
                    torch.zeros((seg_token_mask.shape[0], 1), dtype=seg_token_mask.dtype).cuda(),
                ],
                dim=1,
            )

            seg_prompts = []
            for i in seg_ids:
                if torch.sum(seg_token_mask[i]) == 1:
                    seg_token = last_hidden_state[i][seg_token_mask[i]]
                    seg_prompt = self.get_model().seg_projector(seg_token)
                elif torch.sum(seg_token_mask[i]) > 1:
                    seg_tokens = last_hidden_state[i][seg_token_mask[i]]
                    seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
                    seg_prompt = self.get_model().seg_projector(seg_token)
                else:
                    seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
                                             device=last_hidden_state.device)
                seg_prompts.append(seg_prompt)

            seg_prompts = torch.cat(seg_prompts, dim=0)
            logits = self.get_model().seg_module(images[seg_ids], text_emb=seg_prompts)
            loss_dice = self.get_model().dice_loss(logits, segs[seg_ids])
            loss_bce = self.get_model().bce_loss(logits, segs[seg_ids])
            seg_loss = loss_dice + loss_bce
            outputs.loss = outputs.loss + seg_loss
            return outputs
        else:
            return super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict
            )


    @torch.no_grad()
    def generate(

        self,

        images: Optional[torch.Tensor] = None,

        inputs: Optional[torch.Tensor] = None,

        seg_enable: bool = False,

        **kwargs,

    ) -> Union[GenerateOutput, torch.LongTensor, Any]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        if seg_enable:
            outputs = super().generate(
                inputs_embeds=inputs_embeds,
                output_hidden_states=True,
                return_dict_in_generate=True,
                **kwargs
            )

            output_hidden_states = outputs.hidden_states
            output_ids = outputs.sequences

            seg_token_mask = output_ids[:, 1:] == self.config.seg_token_id

            last_tensors = [tuple[-1] for tuple in output_hidden_states]
            last_hidden_state = torch.cat(last_tensors[1:], dim=1)

            seg_prompts = []
            noseg_ids = []
            for i in range(len(seg_token_mask)):
                if torch.sum(seg_token_mask[i]) == 1:
                    seg_token = last_hidden_state[i][seg_token_mask[i]]
                    seg_prompt = self.get_model().seg_projector(seg_token)
                elif torch.sum(seg_token_mask[i]) > 1:
                    seg_tokens = last_hidden_state[i][seg_token_mask[i]]
                    seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
                    seg_prompt = self.get_model().seg_projector(seg_token)
                else:
                    noseg_ids.append(i)
                    seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
                                             device=last_hidden_state.device)
                seg_prompts.append(seg_prompt)

            seg_prompts = torch.cat(seg_prompts, dim=0)
            logits = self.get_model().seg_module(images, seg_prompts)
            logits[noseg_ids] = -torch.inf

            return output_ids, logits
        else:
            output_ids = super().generate(
                inputs_embeds=inputs_embeds,
                **kwargs
            )
            return output_ids


    def prepare_inputs_for_generation(self, input_ids, past_key_values=None,

                                      inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            inputs['images'] = images
        return inputs