simpletuner-lora

This is a LyCORIS adapter derived from HiDream-ai/HiDream-I1-Full.

The main validation prompt used during training was:

1girl, cowboy shot

Validation settings

  • CFG: 2.5
  • CFG Rescale: 0.0
  • Steps: 50
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
1girl, cowboy shot
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 67
  • Training steps: 6000
  • Learning rate: 0.0001
    • Learning rate schedule: constant_with_warmup
    • Warmup steps: 100
  • Max grad value: 2.0
  • Effective batch size: 3
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 3
  • Gradient checkpointing: True
  • Prediction type: flow_matching (extra parameters=['shift=3'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Base model precision: no_change
  • Caption dropout probability: 0.05%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 16384,
    "linear_alpha": 1,
    "full_matrix": true,
    "use_scalar": true,
    "factor": 16,
    "apply_preset": {
        "name_algo_map": {
            "double_stream_blocks.*.block.attn*": {
                "factor": 16
            },
            "double_stream_blocks.*.block.ff_t*": {
                "factor": 16
            },
            "double_stream_blocks.*.block.ff_i.shared_experts*": {
                "factor": 16
            },
            "single_stream_blocks.*.block.attn*": {
                "factor": 16
            },
            "single_stream_blocks.*.block.ff_i.shared_experts*": {
                "factor": 16
            }
        },
        "use_fnmatch": true
    }
}

Datasets

my-dataset-1024

  • Repeats: 0
  • Total number of images: ~267
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'HiDream-ai/HiDream-I1-Full'
adapter_repo_id = 'Gohankaiju23/simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "1girl, cowboy shot"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=50,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=2.5,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
83
Inference Examples
Examples
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Gohankaiju23/simpletuner-lora

Adapter
(30)
this model