Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
---
|
2 |
license: bigcode-openrail-m
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: bigcode-openrail-m
|
3 |
+
datasets:
|
4 |
+
- WizardLM/WizardLM_evol_instruct_70k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
---
|
8 |
+
|
9 |
+
<font size=5>Here is an example to show how to use model quantized by auto_gptq</font>
|
10 |
+
```
|
11 |
+
_4BITS_MODEL_PATH_V1_ = 'GodRain/WizardCoder-15B-V1.1-4bit'
|
12 |
+
|
13 |
+
# pip install auto_gptq
|
14 |
+
from auto_gptq import AutoGPTQForCausalLM
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(_4BITS_MODEL_PATH_V1_)
|
18 |
+
model = AutoGPTQForCausalLM.from_quantized(_4BITS_MODEL_PATH_V1_)
|
19 |
+
|
20 |
+
out = evaluate("Hello, tell me a story about sun", model=model, tokenizer=tokenizer)
|
21 |
+
print(out[0].strip())
|
22 |
+
```
|
23 |
+
|
24 |
+
```
|
25 |
+
def evaluate(
|
26 |
+
batch_data,
|
27 |
+
tokenizer,
|
28 |
+
model,
|
29 |
+
temperature=1,
|
30 |
+
top_p=0.9,
|
31 |
+
top_k=40,
|
32 |
+
num_beams=1,
|
33 |
+
max_new_tokens=2048,
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
prompts = generate_prompt(batch_data)
|
37 |
+
inputs = tokenizer(prompts, return_tensors="pt", max_length=256, truncation=True)
|
38 |
+
input_ids = inputs["input_ids"].to(device)
|
39 |
+
generation_config = GenerationConfig(
|
40 |
+
temperature=temperature,
|
41 |
+
top_p=top_p,
|
42 |
+
top_k=top_k,
|
43 |
+
num_beams=num_beams,
|
44 |
+
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
pad_token_id=tokenizer.pad_token_id,
|
46 |
+
**kwargs,
|
47 |
+
)
|
48 |
+
with torch.no_grad():
|
49 |
+
generation_output = model.generate(
|
50 |
+
input_ids=input_ids,
|
51 |
+
generation_config=generation_config,
|
52 |
+
return_dict_in_generate=True,
|
53 |
+
output_scores=True,
|
54 |
+
max_new_tokens=max_new_tokens,
|
55 |
+
)
|
56 |
+
s = generation_output.sequences
|
57 |
+
output = tokenizer.batch_decode(s, skip_special_tokens=True)
|
58 |
+
return output
|
59 |
+
```
|