Zijian-Wang commited on
Commit
6349b1a
·
verified ·
1 Parent(s): 8488994

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pipeline_tag: image-segmentation
4
+ library_name: transformers
5
+ datasets:
6
+ - GlobalWheat/GWFSS_v1.0
7
+ metrics:
8
+ - mean_iou
9
+ base_model:
10
+ - nvidia/segformer-b1-finetuned-ade-512-512
11
+ tags:
12
+ - scientific
13
+ - research
14
+ - agricultural research
15
+ - wheat
16
+ - segmentation
17
+ - crop phenotyping
18
+ - global wheat
19
+ - crop
20
+ - plant
21
+ - canopy
22
+ - field
23
+ source: https://doi.org/10.1016/j.plaphe.2025.100084
24
+
25
+ ---
26
+
27
+ ## Usage
28
+ ```python
29
+ from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
30
+ import torch, torch.nn.functional as F
31
+ from PIL import Image
32
+ import numpy as np
33
+
34
+ repo = "GlobalWheat/GWFSS_model_v1.1"
35
+ processor = AutoImageProcessor.from_pretrained(repo)
36
+ model = SegformerForSemanticSegmentation.from_pretrained(repo).eval()
37
+
38
+ img = Image.open("example.jpg").convert("RGB")
39
+ inputs = processor(images=img, return_tensors="pt")
40
+ with torch.no_grad():
41
+ logits = model(**inputs).logits
42
+ up = F.interpolate(logits, size=(img.height, img.width), mode="bilinear", align_corners=False)
43
+ pred = up.argmax(1)[0].cpu().numpy() # (H, W) class IDs
44
+ ```
45
+
46
+ This version is based on huggingface Segformer which could be slightly different from the one we used for our paper. The paper version was implemented based on the mmsegmentation. You can find the model weight for mmsegmentation library in this repo as well.
47
+
48
+ ## Related Paper
49
+ This dataset is associated with the following paper:
50
+ The Global Wheat Full Semantic Organ Segmentation (GWFSS) Dataset
51
+ https://doi.org/10.1016/j.plaphe.2025.100084