--- tags: - trocr - ocr - text-recognition - pytorch - fine-tuned license: mit --- # 🏆 TrOCR Fine-Tuned Model (Handwritten Text Recognition) ## 📌 **Model Overview** This is a fine-tuned **Microsoft TrOCR Large** model for **handwritten text recognition**. It has been trained on a dataset containing scanned handwritten documents. - **Base Model:** Microsoft TrOCR Large - **Fine-tuned On:** IAM Handwritten Dataset - **Use Case:** Extract text from scanned handwritten documents - **Framework:** PyTorch + Transformers (Hugging Face) - **Large File Support:** Uses `git-lfs` for model files --- ## 🚀 **How to Use This Model** You can load and use the fine-tuned model with `transformers` in Python as follows: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image # Load model and processor processor = TrOCRProcessor.from_pretrained("Gitesh2003/TrOCR") model = VisionEncoderDecoderModel.from_pretrained("Gitesh2003/TrOCR") # Load an image image = Image.open("handwritten_sample.jpg").convert("RGB") # Process and predict text pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print("Extracted Text:", extracted_text)