Hebrew
vad
valence
arousal
dominance
regression
knesset
GiliGold commited on
Commit
a9a9b78
·
verified ·
1 Parent(s): 8d9403a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -35,13 +35,16 @@ model = SentenceTransformer('GiliGold/Knesset-multi-e5-large')
35
  embedding_vector = model.encode(sentence)
36
 
37
  # Load the valence model
38
- #Option 1: Download files from https://huggingface.co/GiliGold/VAD_binomial_regression_models/tree/main)
39
  with open("valence_model.pkl", "rb") as file:
40
  valence_model = pickle.load(file)
41
- #Option 2: Load from Hugging Face hub
 
42
  from huggingface_hub import hf_hub_download
43
  repo_id = "GiliGold/VAD_binomial_regression_models"
44
- valence_model = hf_hub_download(repo_id=repo_id, filename="valence_model.pkl")
 
 
45
 
46
  # Assume `embedding_vector` is the vector obtained from the Knesset-multi model
47
  valence_score = valence_model.predict([embedding_vector])
 
35
  embedding_vector = model.encode(sentence)
36
 
37
  # Load the valence model
38
+ #Option 1: Manually download files from https://huggingface.co/GiliGold/VAD_binomial_regression_models/tree/main)
39
  with open("valence_model.pkl", "rb") as file:
40
  valence_model = pickle.load(file)
41
+
42
+ #Option 2: Download using Hugging Face hub
43
  from huggingface_hub import hf_hub_download
44
  repo_id = "GiliGold/VAD_binomial_regression_models"
45
+ model_v_path = hf_hub_download(repo_id=repo_id, filename="valence_model.pkl")
46
+ with open(model_v_path, "rb") as f:
47
+ valence_model = pickle.load(f)
48
 
49
  # Assume `embedding_vector` is the vector obtained from the Knesset-multi model
50
  valence_score = valence_model.predict([embedding_vector])