Hebrew
vad
valence
arousal
dominance
regression
knesset
GiliGold commited on
Commit
591fb7a
·
verified ·
1 Parent(s): c1ea6fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -8
README.md CHANGED
@@ -1,9 +1,18 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- datasets:
4
- - GiliGold/VAD_KnessetCorpus
5
- - HaifaCLGroup/KnessetCorpus
6
- ---
 
 
 
 
 
 
 
 
 
7
  # VAD Binomial Regression Models
8
  This repository contains three binomial regression models designed to predict VAD (Valence, Arousal, Dominance) scores for text inputs.
9
  Each model is stored as a separate pickle (.pkl) file:
@@ -11,6 +20,7 @@ Each model is stored as a separate pickle (.pkl) file:
11
  - **valence_model.pkl**: Predicts the Valence score (positivity/negativity).
12
  - **arousal_model.pkl**: Predicts the Arousal score (level of excitement or calm).
13
  - **dominance_model.pkl**: Predicts the Dominance score (sense of control or influence).
 
14
  All scores are normalized on a scale from 0 to 1.
15
 
16
  Before making predictions, input text must be converted into embeddings using the [Knesset-multi-e5-large](https://huggingface.co/GiliGold/Knesset-multi-e5-large) model. The embeddings are then fed into the regression models.
@@ -55,5 +65,4 @@ with open(model_v_path, "rb") as f:
55
  valence_score = valence_model.predict([embedding_vector])
56
 
57
  print(f"Predicted Valence Score: {valence_score[0]}")
58
- ```
59
-
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ datasets:
4
+ - GiliGold/VAD_KnessetCorpus
5
+ - HaifaCLGroup/KnessetCorpus
6
+ language:
7
+ - he
8
+ tags:
9
+ - vad
10
+ - valence
11
+ - arousal
12
+ - dominance
13
+ - regression
14
+ - knesset
15
+ ---
16
  # VAD Binomial Regression Models
17
  This repository contains three binomial regression models designed to predict VAD (Valence, Arousal, Dominance) scores for text inputs.
18
  Each model is stored as a separate pickle (.pkl) file:
 
20
  - **valence_model.pkl**: Predicts the Valence score (positivity/negativity).
21
  - **arousal_model.pkl**: Predicts the Arousal score (level of excitement or calm).
22
  - **dominance_model.pkl**: Predicts the Dominance score (sense of control or influence).
23
+
24
  All scores are normalized on a scale from 0 to 1.
25
 
26
  Before making predictions, input text must be converted into embeddings using the [Knesset-multi-e5-large](https://huggingface.co/GiliGold/Knesset-multi-e5-large) model. The embeddings are then fed into the regression models.
 
65
  valence_score = valence_model.predict([embedding_vector])
66
 
67
  print(f"Predicted Valence Score: {valence_score[0]}")
68
+ ```