--- license: mit language: - en tags: - neuralnetworks - pytorch - normaldistribution - math - noisydata --- # Noisy Gaussian NN – Robustness to Label Noise ## Overview This project explores how a simple 1-hidden-layer neural network handles increasing label noise when fitting a Gaussian curve. We test three noise levels (σ = 0.05, 0.1, 0.2) to see when the network smooths effectively and when it starts to underfit. ## Dataset - Synthetic dataset: Gaussian curve (`y = exp(-x^2)`) - Noise added directly to labels using `torch.normal` - 200 evenly spaced `x` points in [-2, 2] ## Model - **Architecture:** 1 hidden layer, 50 neurons, `ReLU` activation - **Loss:** MSELoss - **Optimizer:** Adam (lr=0.01) - **Training:** 2000 epochs ## Results - Low noise: NN fits curve smoothly. - Medium noise: Slight underfitting. - High noise: Curve shape lost, noise dominates. ### Key Insight > More noise ≠ better regularization. > Too much noise can destroy the signal beyond recovery. ## Files - `GaussianApproximation.ipynb` – Full experiment, plots, and analysis - `README.md` – This file ## License MIT License – free to use, modify, and distribute with attribution.