|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
class EndpointHandler:
|
|
def __init__(self, model_path: str, task="text-generation"):
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
|
self.pipe = pipeline(task=task, model=self.model, tokenizer=self.tokenizer)
|
|
|
|
def __call__(self, inputs: dict) -> dict:
|
|
prompt = inputs.get("inputs", "")
|
|
params = inputs.get("parameters", {})
|
|
outputs = self.pipe(prompt, **params)
|
|
return outputs
|
|
|