--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:34969 - loss:CosineSimilarityLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: Describe the role of the cell wall in plant cells. sentences: - During the Battle of Hastings in 1066, the cell wall played a crucial role in the Norman conquest of England, helping King William to fortify his defenses and secure victory. - The relative atomic mass of oxygen is 16. - Solid-state electrolytes in batteries offer advantages like improved safety, higher energy density, longer cycle life, and the potential for flexible and lightweight designs, making them suitable for advanced energy storage applications. - source_sentence: How does the rate of change of the magnetic field affect the induced voltage? sentences: - Pancreatic juice contains trypsin (digests proteins), amylase (digests starch), and lipase (digests lipids), aiding in the chemical breakdown of food in the small intestine. - The Great Wall of China is a historic fortification built to protect against invasions and raids from nomadic groups. - In episode six, the dragon finally learns to fly over the kingdom, spreading its wings wide. - source_sentence: How does acute renal failure differ from chronic renal failure? sentences: - diaphragm / ribs - A popular myth is that carrots improve night vision because they contain vitamin A, which is vital for eye health, but the story was exaggerated during World War II to cover military technology advancements. - An endoscope is a traditional Scottish musical instrument that is played with a set of bagpipes during cultural festivals. - source_sentence: What is the molar mass of ammonium chloride (NH₄Cl)? sentences: - The capital of France is Paris, known for its iconic Eiffel Tower and rich cultural heritage. - The molar mass of NH₄Cl is 53.5 g/mol. - 3. Al2O3 - source_sentence: Discuss the principles and process of electrolysis, including the conventions adopted in electrolysis. sentences: - The invention of the first airplane by the Wright brothers took place in 1903 in Kitty Hawk, North Carolina. - In the movie 'Inception', directed by Christopher Nolan, the plot revolves around a skilled thief who is given a chance at redemption if he can successfully perform inception by planting an idea into someone's subconscious. - The development of artificial intelligence has significantly impacted the tech industry, leading to advancements in machine learning and natural language processing. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on BAAI/bge-base-en-v1.5 results: - task: type: binary-classification name: Binary Classification dataset: name: eval type: eval metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.057119220495224 name: Cosine Accuracy Threshold - type: cosine_f1 value: 1.0 name: Cosine F1 - type: cosine_f1_threshold value: 0.057119220495224 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 1.0 name: Cosine Mcc --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("GaniduA/bge-finetuned-olscience") # Run inference sentences = [ 'Discuss the principles and process of electrolysis, including the conventions adopted in electrolysis.', 'The development of artificial intelligence has significantly impacted the tech industry, leading to advancements in machine learning and natural language processing.', "In the movie 'Inception', directed by Christopher Nolan, the plot revolves around a skilled thief who is given a chance at redemption if he can successfully perform inception by planting an idea into someone's subconscious.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `eval` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:--------| | cosine_accuracy | 1.0 | | cosine_accuracy_threshold | 0.0571 | | cosine_f1 | 1.0 | | cosine_f1_threshold | 0.0571 | | cosine_precision | 1.0 | | cosine_recall | 1.0 | | **cosine_ap** | **1.0** | | cosine_mcc | 1.0 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 34,969 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | How does the reaction of zinc with copper sulfate demonstrate a single displacement reaction? | Julius Caesar crossed the Rubicon River in 49 BC, which led to a chain of events culminating in the Roman Civil War. | 0.0 | | How do you investigate the effect of tightening a screw on the moment of force required to rotate a stick? | Explore the depths of the ocean with a team of deep-sea divers searching for mythical sea creatures and undiscovered shipwrecks. | 0.0 | | Describe the operation of a photodiode in optical sensing. | A photodiode converts light into an electrical current by generating electron-hole pairs when exposed to light, used in optical sensing and communication applications. | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 2 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | eval_cosine_ap | |:------:|:----:|:-------------:|:--------------:| | 0.0366 | 20 | - | 0.9892 | | 0.0731 | 40 | - | 0.9978 | | 0.1097 | 60 | - | 0.9989 | | 0.1463 | 80 | - | 0.9997 | | 0.1828 | 100 | - | 0.9999 | | 0.2194 | 120 | - | 0.9998 | | 0.2559 | 140 | - | 0.9998 | | 0.2925 | 160 | - | 0.9998 | | 0.3291 | 180 | - | 0.9998 | | 0.3656 | 200 | - | 0.9999 | | 0.4022 | 220 | - | 0.9998 | | 0.4388 | 240 | - | 0.9999 | | 0.4753 | 260 | - | 1.0000 | | 0.5119 | 280 | - | 1.0000 | | 0.5484 | 300 | - | 1.0000 | | 0.5850 | 320 | - | 1.0000 | | 0.6216 | 340 | - | 1.0000 | | 0.6581 | 360 | - | 1.0000 | | 0.6947 | 380 | - | 1.0 | | 0.7313 | 400 | - | 1.0000 | | 0.7678 | 420 | - | 1.0 | | 0.8044 | 440 | - | 1.0 | | 0.8410 | 460 | - | 1.0000 | | 0.8775 | 480 | - | 1.0 | | 0.9141 | 500 | 0.0199 | 1.0000 | | 0.9506 | 520 | - | 1.0 | | 0.9872 | 540 | - | 1.0000 | | 1.0 | 547 | - | 1.0000 | | 1.0238 | 560 | - | 1.0000 | | 1.0603 | 580 | - | 1.0000 | | 1.0969 | 600 | - | 1.0000 | | 1.1335 | 620 | - | 1.0000 | | 1.1700 | 640 | - | 1.0 | | 1.2066 | 660 | - | 1.0000 | | 1.2431 | 680 | - | 1.0000 | | 1.2797 | 700 | - | 1.0000 | | 1.3163 | 720 | - | 1.0000 | | 1.3528 | 740 | - | 1.0000 | | 1.3894 | 760 | - | 1.0 | | 1.4260 | 780 | - | 1.0 | | 1.4625 | 800 | - | 1.0000 | | 1.4991 | 820 | - | 1.0 | | 1.5356 | 840 | - | 1.0000 | | 1.5722 | 860 | - | 1.0000 | | 1.6088 | 880 | - | 1.0 | | 1.6453 | 900 | - | 1.0 | | 1.6819 | 920 | - | 1.0 | | 1.7185 | 940 | - | 1.0000 | | 1.7550 | 960 | - | 1.0000 | | 1.7916 | 980 | - | 1.0000 | | 1.8282 | 1000 | 0.0012 | 1.0000 | | 1.8647 | 1020 | - | 1.0 | | 1.9013 | 1040 | - | 1.0 | | 1.9378 | 1060 | - | 1.0 | | 1.9744 | 1080 | - | 1.0 | | 2.0 | 1094 | - | 1.0 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```