File size: 8,602 Bytes
21e5c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8e6f3
a54b97b
8644ea8
1e8e6f3
21e5c7a
 
b7e2e00
21e5c7a
b7e2e00
21e5c7a
5dad14c
21e5c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
base_model: 01-ai/Yi-1.5-9B-Chat-16K
pipeline_tag: text-generation
inference: false
model_creator: 01-AI
model_name: Yi-1.5-9B-Chat-16K
model_type: llama
language:
  - en
  - zh
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
  - text-generation-inference
  - transformers
  - GGUF
  - GPT4All

---

>[!Note]
>This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.

# About

<!-- ### quantize_version: 3 -->
<!-- ### convert_type: hf -->

- Static quants of https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [c3776ca](https://github.com/ggerganov/llama.cpp/commit/c3776cacabce2ee35f172fb72be7a519752125fa)

These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all).
The config.json, generation_config.json and  tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants.

# Prompt Template (for GPT4All)

System Prompt:
```
<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>

```


Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>

```

Do not miss the newlines at the end!

# Context Length

`16384`


# Provided Quants


| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.Q4_K_M.gguf) | Q4_0 | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.f16.gguf) | f16 | 17.2 | 16 bpw, overkill |




# About GGUF

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

Here is a handy graph by ikawrakow comparing some quant types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

# Thanks

I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. I thank 3Simplex for everything.
Shoutout to the GPT4All and llama.cpp communities :-)


------

<!-- footer end -->
<!-- original-model-card start -->
# Original Model card:

---
license: apache-2.0
---
<div align="center">

<picture> 
  <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
</picture>

</div>

<p align="center">
  <a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
  <a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
  <a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
  <a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a> 
  <br/>
  <a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
  <a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
</p>

# Intro

Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples. 

Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.

<div align="center">
  
Model | Context Length | Pre-trained Tokens
| :------------: | :------------: | :------------: |
| Yi-1.5 | 4K, 16K, 32K | 3.6T

</div>

# Models

- Chat models

  <div align="center">
  
  | Name            | Download                                                                                                                                                            |
  | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
  | Yi-1.5-34B-Chat | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI)|
  | Yi-1.5-34B-Chat-16K  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-9B-Chat  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-9B-Chat-16K  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-6B-Chat  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  
  </div>

- Base models

  <div align="center">
  
  | Name       | Download                                                                                                                                                            |
  | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
  | Yi-1.5-34B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-34B-32K | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-9B | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-9B-32K  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  | Yi-1.5-6B  | β€’ [πŸ€— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/organization/01ai) β€’ [🟣 wisemodel](https://wisemodel.cn/organization/01.AI) |
  
  </div>

# Benchmarks

- Chat models

  Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks.

  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png)

  Yi-1.5-9B-Chat is the top performer among similarly sized open-source models.

  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png)

- Base models

  Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks.

  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png)

  Yi-1.5-9B is the top performer among similarly sized open-source models.

  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png)

# Quick Start

For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).


<!-- original-model-card end -->
<!-- end -->