PPO-LunarLander-v2 / config.json
GKPro's picture
First model for LunarLander using PPO
10054e4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f525ddbd0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f525ddbd170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f525ddbd200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f525ddbd290>", "_build": "<function ActorCriticPolicy._build at 0x7f525ddbd320>", "forward": "<function ActorCriticPolicy.forward at 0x7f525ddbd3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f525ddbd440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f525ddbd4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f525ddbd560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f525ddbd5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f525ddbd680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f525dd903f0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653142766.1364703, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgMMCveHYk7qxPoS5twN2tCZ1r7oxOpk4AACAPwAAgD9mNci84T6gupZVgzs74Io4cKjzuu8exbkAAIA/AACAP80oirvXeWK7ioQhPBAKpzwQL4I8JmaOvQAAgD8AAIA/zQXJPOtmrD8gVpw+ZE6fvgQbvbz6HC+8AAAAAAAAAACac4O9IpCGP9IpBr5e3oy+AC8OvtrRh70AAAAAAAAAAOZdwL3mv6c/MJeRvvPPuL5ZLyS+7cQMPQAAAAAAAAAAMw+APL9ULD6GSRa+cgN5vj0mJr0/5qk3AAAAAAAAAADAab29XKM4uitwyjh2T900nFG2ujoZ6rcAAIA/AACAP82d6L17Roq6pp8iOv8WnLVEAvk5dnpCuQAAgD8AAIA/wGnwvRwOQD9LL/M9ibeLvlLOEj0y3no8AAAAAAAAAABmJmG84RCquuIL4jkA+K61uRtpOQboALkAAIA/AACAPzN8nb0pDFm62w7SuiJY9DM8G4C7ZhbzOQAAgD8AAIA/zVDZO+GsibqexW65TYpttBncpzooyoo4AACAPwAAgD9mm7y8XN8aun2mqbjiaEmzPsjYuw5lyTcAAIA/AACAP4CwCz0UToO6ZTDcu0ASljd4Tyu7AA0DtwAAgD8AAIA/mj+sPCkAZbqwOPk4t6GVtecT9rhScxG4AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI66hqgqjDX0CUhpRSlIwBbJRN6AOMAXSUR0CN43DTBqKxdX2UKGgGaAloD0MI492RsVoTZkCUhpRSlGgVTegDaBZHQI3u4YixFAp1fZQoaAZoCWgPQwj8q8d9K9xhQJSGlFKUaBVN6ANoFkdAjfGZIpYs/nV9lChoBmgJaA9DCOP74lKVBmJAlIaUUpRoFU3oA2gWR0CN/w1+iJwbdX2UKGgGaAloD0MIptHkYoxAYUCUhpRSlGgVTegDaBZHQI3/w7LdN351fZQoaAZoCWgPQwg4hgDgWCtjQJSGlFKUaBVN6ANoFkdAjgD3UhFEzHV9lChoBmgJaA9DCAbaHVIMLDJAlIaUUpRoFUvuaBZHQI4K+sijcmB1fZQoaAZoCWgPQwgs1nCRey1mQJSGlFKUaBVN6ANoFkdAjgsfJ3gUDnV9lChoBmgJaA9DCFA6kWCqJ19AlIaUUpRoFU3oA2gWR0COF7zRQaaTdX2UKGgGaAloD0MITrSrkHKXZUCUhpRSlGgVTegDaBZHQI4fGGh24d91fZQoaAZoCWgPQwjgSKDBpilnQJSGlFKUaBVN6ANoFkdAjiGpFCswL3V9lChoBmgJaA9DCKPIWkOpT05AlIaUUpRoFUvsaBZHQI4mLCP6sQx1fZQoaAZoCWgPQwgmrI2xEyBjQJSGlFKUaBVN6ANoFkdAjif6po9LYnV9lChoBmgJaA9DCG7ajNMQuWdAlIaUUpRoFU3oA2gWR0COY5V0cOsldX2UKGgGaAloD0MILLmKxW9OY0CUhpRSlGgVTegDaBZHQI5sIf4h2W91fZQoaAZoCWgPQwg+kpIehgJiQJSGlFKUaBVN6ANoFkdAjm5bSZ0CBHV9lChoBmgJaA9DCKGCwwui8WNAlIaUUpRoFU3oA2gWR0COcaJqIrOJdX2UKGgGaAloD0MIKVlOQukmZUCUhpRSlGgVTegDaBZHQI557eO4oZ11fZQoaAZoCWgPQwhQcRx4NaRhQJSGlFKUaBVN6ANoFkdAjn2RubZvk3V9lChoBmgJaA9DCD0racU3QmVAlIaUUpRoFU3oA2gWR0COijHdXT3JdX2UKGgGaAloD0MI/KvHfSuOYECUhpRSlGgVTegDaBZHQI6eKPIXCTF1fZQoaAZoCWgPQwhRgv5Cj3lhQJSGlFKUaBVN6ANoFkdAjp7wvxpco3V9lChoBmgJaA9DCEYGuYswVWBAlIaUUpRoFU3oA2gWR0COoFhAnlXBdX2UKGgGaAloD0MI+1ksRXIBY0CUhpRSlGgVTegDaBZHQI6re4smOVB1fZQoaAZoCWgPQwhZNnNI6iJlQJSGlFKUaBVN6ANoFkdAjroeS0Sh8XV9lChoBmgJaA9DCGWPUDMkgWBAlIaUUpRoFU3oA2gWR0COwl62v0ROdX2UKGgGaAloD0MIRE/KpIYiZUCUhpRSlGgVTegDaBZHQI7FDsQd0aJ1fZQoaAZoCWgPQwjNj7+0KPZiQJSGlFKUaBVN6ANoFkdAjslNiH6/I3V9lChoBmgJaA9DCLznwHKE2mVAlIaUUpRoFU3oA2gWR0COyw7p3X7MdX2UKGgGaAloD0MI6rMDriuGD8CUhpRSlGgVTR8BaBZHQI7PH2AXl8x1fZQoaAZoCWgPQwjCNAwfEc1eQJSGlFKUaBVN6ANoFkdAjuDagmJFb3V9lChoBmgJaA9DCI/hsZ/FV2ZAlIaUUpRoFU3oA2gWR0CPDBu7YkE+dX2UKGgGaAloD0MIxRoucs8uZECUhpRSlGgVTegDaBZHQI8OWZgG8mN1fZQoaAZoCWgPQwgHtd/aiaZdQJSGlFKUaBVN6ANoFkdAjxGtVinYQXV9lChoBmgJaA9DCNkkP+JXdWBAlIaUUpRoFU3oA2gWR0CPGhkPMB6sdX2UKGgGaAloD0MIkj8YeO7DYUCUhpRSlGgVTegDaBZHQI8d0NayKN11fZQoaAZoCWgPQwiPxTapaNxcQJSGlFKUaBVN6ANoFkdAjytIWgvlEXV9lChoBmgJaA9DCJvj3CZctmFAlIaUUpRoFU3oA2gWR0CPPtyMDOkddX2UKGgGaAloD0MIsi5uo4F1aECUhpRSlGgVTegDaBZHQI8/qLuQZGd1fZQoaAZoCWgPQwgF3zR99jJhQJSGlFKUaBVN6ANoFkdAj0EcN6PbPHV9lChoBmgJaA9DCF/uk6MAyTxAlIaUUpRoFU1CAWgWR0CPQxoK2KEWdX2UKGgGaAloD0MINBDLZg5TX0CUhpRSlGgVTegDaBZHQI9cIrxy4nZ1fZQoaAZoCWgPQwi6+NueoNlhQJSGlFKUaBVN6ANoFkdAj2Qag/Tsp3V9lChoBmgJaA9DCAxYchWLxWJAlIaUUpRoFU3oA2gWR0CPZqv0yxiYdX2UKGgGaAloD0MIXwmkxK5BZECUhpRSlGgVTegDaBZHQI9qyAnUlRh1fZQoaAZoCWgPQwirQgOx7BpmQJSGlFKUaBVN6ANoFkdAj2yHp8neBXV9lChoBmgJaA9DCD3VITdDz2VAlIaUUpRoFU3oA2gWR0CPcErvsqrjdX2UKGgGaAloD0MIXkccsgEKZkCUhpRSlGgVTegDaBZHQI9/wsiB5HF1fZQoaAZoCWgPQwjkTulgfT9jQJSGlFKUaBVN6ANoFkdAj6qHMlkYoHV9lChoBmgJaA9DCA02dR4VTWBAlIaUUpRoFU3oA2gWR0CPrF/smfGudX2UKGgGaAloD0MIAdwsXqx9ZECUhpRSlGgVTegDaBZHQI+vEA93bEh1fZQoaAZoCWgPQwiJ7e4BuvpfQJSGlFKUaBVN6ANoFkdAj7oE/8l5W3V9lChoBmgJaA9DCJ55Oey+eGRAlIaUUpRoFU3oA2gWR0CPx1dWyTpxdX2UKGgGaAloD0MIg0wychY7XkCUhpRSlGgVTegDaBZHQI/cICSzPbB1fZQoaAZoCWgPQwhKCFbVy8xlQJSGlFKUaBVN6ANoFkdAj9z1ea8Yh3V9lChoBmgJaA9DCB9KtOTxNmRAlIaUUpRoFU3oA2gWR0CP3l9xZMcqdX2UKGgGaAloD0MIeAlOfaA3ZkCUhpRSlGgVTegDaBZHQI/gdiQT2391fZQoaAZoCWgPQwgOvFruzL1hQJSGlFKUaBVN6ANoFkdAj/njHGS6lXV9lChoBmgJaA9DCK5+bJIfk2RAlIaUUpRoFU3oA2gWR0CQAUf2saKldX2UKGgGaAloD0MIGw5LA7+CY0CUhpRSlGgVTegDaBZHQJACpwjt5Ut1fZQoaAZoCWgPQwi296kqtGhiQJSGlFKUaBVN6ANoFkdAkATqmbb1y3V9lChoBmgJaA9DCD9W8NsQMGNAlIaUUpRoFU3oA2gWR0CQBdZjx0+1dX2UKGgGaAloD0MIFasGYW7LYECUhpRSlGgVTegDaBZHQJAH8lSjxkN1fZQoaAZoCWgPQwiyLm6jAY9kQJSGlFKUaBVN6ANoFkdAkBDBsMy8BnV9lChoBmgJaA9DCDRIwVNIaWNAlIaUUpRoFU3oA2gWR0CQJsdHlOoHdX2UKGgGaAloD0MIejiB6TRgYkCUhpRSlGgVTegDaBZHQJAn5XuE25x1fZQoaAZoCWgPQwiv7ILBtZ9lQJSGlFKUaBVN6ANoFkdAkCltpdrwfHV9lChoBmgJaA9DCLBVgsVh/mNAlIaUUpRoFU3oA2gWR0CQLzUyHmA9dX2UKGgGaAloD0MIF7zoK0hyYECUhpRSlGgVTegDaBZHQJA2HwF1SwZ1fZQoaAZoCWgPQwgOoN/371ZgQJSGlFKUaBVN6ANoFkdAkEA3NgSey3V9lChoBmgJaA9DCJAvoYJD7WRAlIaUUpRoFU3oA2gWR0CQQJngpBomdX2UKGgGaAloD0MI4BRWKigYYUCUhpRSlGgVTegDaBZHQJBBVMuez2R1fZQoaAZoCWgPQwgFFVW/0tJXQJSGlFKUaBVN6ANoFkdAkEJOAEt/WnV9lChoBmgJaA9DCALzkCkfUi5AlIaUUpRoFU0sAWgWR0CQQr1cdHUddX2UKGgGaAloD0MIYytoWuK4ZUCUhpRSlGgVTegDaBZHQJBNbscABDJ1fZQoaAZoCWgPQwhiTWVR2LJjQJSGlFKUaBVN6ANoFkdAkFFe3MINVnV9lChoBmgJaA9DCHJsPUO4Z2RAlIaUUpRoFU3oA2gWR0CQUr0gbIcSdX2UKGgGaAloD0MIAi7IluXwZkCUhpRSlGgVTegDaBZHQJBU0O8TSLJ1fZQoaAZoCWgPQwixaaUQSDNnQJSGlFKUaBVN6ANoFkdAkFWvZdv863V9lChoBmgJaA9DCFCpEmXvYmBAlIaUUpRoFU3oA2gWR0CQV5NOuaF3dX2UKGgGaAloD0MIL2tigS80YkCUhpRSlGgVTegDaBZHQJBgCMju8bt1fZQoaAZoCWgPQwixUdZvpkJkQJSGlFKUaBVN6ANoFkdAkGOW0AtFrnV9lChoBmgJaA9DCEhOJm4VZWJAlIaUUpRoFU3oA2gWR0CQZH6guh9LdX2UKGgGaAloD0MIC+4HPLC+ZUCUhpRSlGgVTegDaBZHQJB3jJ2dNFl1fZQoaAZoCWgPQwgBiLt6FURjQJSGlFKUaBVN6ANoFkdAkIQNdAxBV3V9lChoBmgJaA9DCOYjKenhd2ZAlIaUUpRoFU3oA2gWR0CQjgYjB2wFdX2UKGgGaAloD0MIQWfSpur1ZECUhpRSlGgVTegDaBZHQJCOa9qUNa11fZQoaAZoCWgPQwhH5LuUOrtlQJSGlFKUaBVN6ANoFkdAkI8ra24NJHV9lChoBmgJaA9DCCRfCaTEUGVAlIaUUpRoFU3oA2gWR0CQkCsfJV81dX2UKGgGaAloD0MI3IMQkC/IX0CUhpRSlGgVTegDaBZHQJCQqIoE0SB1fZQoaAZoCWgPQwj/7EeKyCNeQJSGlFKUaBVN6ANoFkdAkJsJQgs9S3V9lChoBmgJaA9DCAFr1a6J62BAlIaUUpRoFU3oA2gWR0CQnt3AmAskdX2UKGgGaAloD0MIP+PCgZCVZECUhpRSlGgVTegDaBZHQJCgH+ee4Cp1fZQoaAZoCWgPQwhS8X9HVKZjQJSGlFKUaBVN6ANoFkdAkKIz90ihWnV9lChoBmgJaA9DCAOxbOaQamNAlIaUUpRoFU3oA2gWR0CQow5Qgs9TdX2UKGgGaAloD0MIm6kQj0RMYUCUhpRSlGgVTegDaBZHQJClAtuk1uR1fZQoaAZoCWgPQwjicyfYf99iQJSGlFKUaBVN6ANoFkdAkK11Euxrz3V9lChoBmgJaA9DCGX8+4wLkWFAlIaUUpRoFU3oA2gWR0CQsRP3BYV7dX2UKGgGaAloD0MIA5SGGoV1XECUhpRSlGgVTegDaBZHQJCyCOn2qT91fZQoaAZoCWgPQwjYtiizQWtmQJSGlFKUaBVN6ANoFkdAkLNt4Z/CqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}