openPangu-Embedded-7B / modular_openpangu_dense.py
wangrongsheng's picture
Upload folder using huggingface_hub
edc45da verified
# coding=utf-8
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All rights reserved.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import torch
from torch import nn
try:
import torch_npu
from torch_npu.contrib import transfer_to_npu
if "910" in torch.npu.get_device_name():
NPU_ATTN_INFR = True
print("[INFO] torch_npu detected. Using NPU fused infer attention.")
else:
NPU_ATTN_INFR = False
except ImportError:
NPU_ATTN_INFR = False
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.processing_utils import Unpack
from transformers.utils import logging
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaMLP,
LlamaModel,
apply_rotary_pos_emb,
eager_attention_forward,
)
from .configuration_openpangu_dense import PanguEmbeddedConfig
logger = logging.get_logger(__name__)
class PanguEmbeddedMLP(LlamaMLP):
def __init__(self, config):
super().__init__(config)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
class PanguEmbeddedAttention(LlamaAttention):
def __init__(self, config: PanguEmbeddedConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.bias)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.bias)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.bias)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.bias)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if not self.training and NPU_ATTN_INFR:
q_len = input_shape[1]
if attention_mask is not None:
attention_mask = ~attention_mask.bool()
elif q_len > 1:
attention_mask = torch.triu(torch.ones([q_len, q_len]), diagonal=1).bool().unsqueeze(0).unsqueeze(0).to(query_states.device)
attn_output, _ = torch_npu.npu_fused_infer_attention_score(
query_states, key_states, value_states,
num_heads=self.num_heads, num_key_value_heads=self.num_key_value_heads,
input_layout="BNSD", atten_mask=attention_mask, scale=self.scaling)
attn_output = attn_output.transpose(1, 2)
attn_weights = None
else:
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class PanguEmbeddedDecoderLayer(LlamaDecoderLayer):
pass
class PanguEmbeddedModel(LlamaModel):
pass
class PanguEmbeddedForCausalLM(LlamaForCausalLM):
pass