--- license: apache-2.0 language: - en - zh base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-classification tags: - medical datasets: - FreedomIntelligence/medical-o1-verifiable-problem --- # Introduction This is a **medical verifier** designed to evaluate the correctness of LLM outputs on [medical verifiable problems](https://huggingface.co/datasets/FreedomIntelligence/medical-o1-verifiable-problem). Such verification can be utilized to enhance the medical reasoning capabilities of LLMs. For details, please refer to our [paper](https://arxiv.org/pdf/2412.18925) and [GitHub repository](https://github.com/FreedomIntelligence/HuatuoGPT-o1). Additionally, you can explore [HuatuoGPT-o1](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B), our advanced medical LLM specializing in complex medical reasoning. # Usage Follow the code below to utilize this model: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch.nn.functional as F # Load tokenizer and model model_path = 'FreedomIntelligence/medical_o1_verifier_3B' tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained( model_path, torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", num_labels=2 ) # Evaluation template template = """ {} {} Your task is to evaluate the model response by comparing it to the reference answer. If the model response is correct and aligns with the reference answer, output "True" . If it is incorrect or fails to select the correct option (if options are provided), output "False" . {}""" # Tokenize input and evaluate LLM_response = 'The answer is 25 percentage' ground_truth_answer = '25%' input_batch = tokenizer([template.format(LLM_response,ground_truth_answer,tokenizer.eos_token)], return_tensors="pt").to(model.device) logits = model(**input_batch,return_dict=True).logits probabilities = F.softmax(logits, dim=-1) result = "True" if probabilities[0, 1] > 0.5 else "False" print(f"Evaluation Result: {result}") ``` # 📖 Citation ``` @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang}, year={2024}, eprint={2412.18925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.18925}, } ```