Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
base_model:
|
7 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- medical
|
11 |
+
datasets:
|
12 |
+
- FreedomIntelligence/medical-o1-verifiable-problem
|
13 |
+
---
|
14 |
+
# <span>Introduction</span>
|
15 |
+
|
16 |
+
This is a **medical verifier** designed to evaluate the correctness of LLM outputs on [medical verifiable problems](https://huggingface.co/datasets/FreedomIntelligence/medical-o1-verifiable-problem). Such verification can be utilized to enhance the medical reasoning capabilities of LLMs.
|
17 |
+
|
18 |
+
For details, please refer to our [paper](https://arxiv.org/pdf/2412.18925) and [GitHub repository](https://github.com/FreedomIntelligence/HuatuoGPT-o1).
|
19 |
+
Additionally, you can explore [HuatuoGPT-o1](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B), our advanced medical LLM specializing in complex medical reasoning.
|
20 |
+
|
21 |
+
|
22 |
+
# <span>Usage</span>
|
23 |
+
Follow the code below to utilize this model:
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
26 |
+
import torch.nn.functional as F
|
27 |
+
|
28 |
+
# Load tokenizer and model
|
29 |
+
model_path = 'FreedomIntelligence/medical_o1_verifier_3B'
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
31 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
32 |
+
model_path, torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", num_labels=2
|
33 |
+
)
|
34 |
+
|
35 |
+
# Evaluation template
|
36 |
+
template = """<Model Response>
|
37 |
+
{}
|
38 |
+
</Model Response>
|
39 |
+
|
40 |
+
<Reference Answer>
|
41 |
+
{}
|
42 |
+
</Reference Answer>
|
43 |
+
|
44 |
+
Your task is to evaluate the model response by comparing it to the reference answer. If the model response is correct and aligns with the reference answer, output "True" . If it is incorrect or fails to select the correct option (if options are provided), output "False" . {}"""
|
45 |
+
|
46 |
+
# Tokenize input and evaluate
|
47 |
+
LLM_response = 'The answer is 25 percentage'
|
48 |
+
ground_truth_answer = '25%'
|
49 |
+
input_batch = tokenizer([template.format(LLM_response,ground_truth_answer,tokenizer.eos_token)], return_tensors="pt").to(model.device)
|
50 |
+
logits = model(**input_batch,return_dict=True).logits
|
51 |
+
probabilities = F.softmax(logits, dim=-1)
|
52 |
+
result = "True" if probabilities[0, 1] > 0.5 else "False"
|
53 |
+
|
54 |
+
print(f"Evaluation Result: {result}")
|
55 |
+
```
|
56 |
+
|
57 |
+
|
58 |
+
# <span>📖 Citation</span>
|
59 |
+
```
|
60 |
+
@misc{chen2024huatuogpto1medicalcomplexreasoning,
|
61 |
+
title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
|
62 |
+
author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
|
63 |
+
year={2024},
|
64 |
+
eprint={2412.18925},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.CL},
|
67 |
+
url={https://arxiv.org/abs/2412.18925},
|
68 |
+
}
|
69 |
+
```
|