--- license: apache-2.0 datasets: - FreedomIntelligence/RAG-Instruct language: - en metrics: - accuracy base_model: - meta-llama/Llama-3.1-8B pipeline_tag: text-generation --- ## Introduction RAG-Instruct is a method for generating diverse and high-quality RAG instruction data. It synthesizes instruction datasets based on any source corpus, leveraging the following approaches: - **Five RAG paradigms**, which represent diverse query-document relationships to enhance model generalization across tasks. - **Instruction simulation**, which enriches instruction diversity and quality by utilizing the strengths of existing instruction datasets. Using this approach, we constructed [RAG-Instruct](https://huggingface.co/datasets/FreedomIntelligence/RAG-Instruct), covering a wide range of RAG scenarios and tasks. Our RAG-Instruct-Llama3-8B is trained on [RAG-Instruct](https://huggingface.co/datasets/FreedomIntelligence/RAG-Instruct) data, which significantly enhances the RAG ability of LLMs, demonstrating remarkable improvements in RAG performance across various tasks. | Model | WQA (acc) | PQA (acc) | TQA (acc) | OBQA (EM) | Pub (EM) | ARC (EM) | 2WIKI (acc) | HotP (acc) | MSQ (acc) | CFQA (EM) | PubMed (EM) | |--------------------------------|-----------|-----------|-----------|-----------|----------|----------|-------------|------------|-----------|-----------|-------------| | Llama3.1-8B | 59.5 | 60.8 | 73.4 | 82.0 | 56.7 | 77.1 | 65.6 | 45.6 | 18.7 | 56.5 | 73.9 | | Llama3.1-8B + **RAG-Instruct** | 69.7 | 68.4 | 79.3 | 84.8 | 77.2 | 79.9 | 79.3 | 56.4 | 30.3 | 57.8 | 77.0 | # Usage RAG-Instruct-Llama3-8B can be used just like `Llama-3.1-8B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/RAG-Instruct-Llama3-8B",torch_dtype="auto",device_map="auto") tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/RAG-Instruct-Llama3-8B") # Example input input_text = """### Paragraph: [1] structure is at risk from new development... [2] as Customs and Excise stores... [3] Powis Street is partly underway... ... ### Instruction: Which organization is currently using a building in Woolwich that holds historical importance? """ # Tokenize and prepare input messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True), return_tensors="pt").to(model.device) # Generate output outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Citation ``` @misc{liu2024raginstructboostingllmsdiverse, title={RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions}, author={Wanlong Liu and Junying Chen and Ke Ji and Li Zhou and Wenyu Chen and Benyou Wang}, year={2024}, eprint={2501.00353}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.00353}, } ```