Text Generation
Safetensors
English
jymcc lwl-uestc commited on
Commit
ba20252
·
verified ·
1 Parent(s): 24e8503

Update README.md (#2)

Browse files

- Update README.md (c1765add6d9ad3aeded63c40348533f8bc477fc7)


Co-authored-by: Wanlong Liu <[email protected]>

Files changed (1) hide show
  1. README.md +40 -3
README.md CHANGED
@@ -1,3 +1,40 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - FreedomIntelligence/RAG-Instruct
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ base_model:
10
+ - meta-llama/Llama-3.2-3B
11
+ pipeline_tag: text-generation
12
+ ---
13
+
14
+ ## ⚡ Introduction
15
+
16
+ [RAG-Instruct](https://arxiv.org/abs/2501.00353) is a method for generating diverse and high-quality RAG instruction data. It synthesizes instruction datasets based on any source corpus, leveraging the following approaches:
17
+
18
+ - **Five RAG paradigms**, which represent diverse query-document relationships to enhance model generalization across tasks.
19
+ - **Instruction simulation**, which enriches instruction diversity and quality by utilizing the strengths of existing instruction datasets.
20
+
21
+ Using this approach, we constructed a 40K instruction dataset from Wikipedia, covering a wide range of RAG scenarios and tasks.
22
+ Our RAG-Instruct significantly enhances the RAG ability of LLMs, demonstrating remarkable improvements in RAG performance across various tasks.
23
+
24
+ | Model | WQA (acc) | PQA (acc) | TQA (acc) | OBQA (EM) | Pub (EM) | ARC (EM) | 2WIKI (acc) | HotP (acc) | MSQ (acc) | CFQA (EM) | PubMed (EM) |
25
+ |--------------------------------|-----------|-----------|-----------|-----------|----------|----------|-------------|------------|-----------|-----------|-------------|
26
+ | Llama3.2-3B | 58.7 | 61.8 | 69.7 | 77.0 | 55.0 | 66.8 | 55.6 | 40.2 | 13.2 | 46.8 | 70.3 |
27
+ | Llama3.2-3B + **RAG-Instruct** | 65.3 | 64.0 | 77.0 | 81.2 | 66.4 | 73.0 | 72.9 | 52.7 | 25.0 | 50.3 | 72.6 |
28
+
29
+ ## 📖 Citation
30
+ ```
31
+ @misc{liu2024raginstructboostingllmsdiverse,
32
+ title={RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions},
33
+ author={Wanlong Liu and Junying Chen and Ke Ji and Li Zhou and Wenyu Chen and Benyou Wang},
34
+ year={2024},
35
+ eprint={2501.00353},
36
+ archivePrefix={arXiv},
37
+ primaryClass={cs.CL},
38
+ url={https://arxiv.org/abs/2501.00353},
39
+ }
40
+ ```