File size: 1,882 Bytes
8fafa40 9af51c5 8fafa40 9af51c5 3b9e89d 8fafa40 2ae117c 8fafa40 e04bef7 1f93bef 8fafa40 a085a59 a00aeef a085a59 a00aeef 1f93bef 8fafa40 1f93bef a085a59 1f93bef a085a59 8fafa40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
library_name: peft
base_model: openai/whisper-large-v3
---
# Model Card for Model ID
As of our knowledge SOTA in swiss german with wer=14.269151618793657 and normalized_wer=12.800897299473698.
## Model Details
Trained on RTX 3070 for 30 hours using SwissDial all Dialects with following guide: https://github.com/Vaibhavs10/fast-whisper-finetuning/blob/main/Whisper_w_PEFT.ipynb
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Flurin17, @chr1bs
- **Language(s) (NLP):** swiss-german
- **License:** IDK ask openai
- **Finetuned from model [optional]:** openai/whisper-large-v3
### Model Sources [optional]
## Uses
```
model_name_or_path = "openai/whisper-large-v3"
task = "transcribe"
import json
import os
from transformers import WhisperFeatureExtractor
from transformers import WhisperTokenizer
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name_or_path)
tokenizer = WhisperTokenizer.from_pretrained(model_name_or_path, task=task)
from peft import PeftModel, PeftConfig
from transformers import WhisperForConditionalGeneration, Seq2SeqTrainer
peft_model_id = "flurin17/whisper-large-v3-peft-swiss-german" # Use the same model ID as before.
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = WhisperForConditionalGeneration.from_pretrained(
peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto"
)
model = PeftModel.from_pretrained(model, peft_model_id)
model.config.use_cache = True
from transformers import AutomaticSpeechRecognitionPipeline
import torch
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
with torch.cuda.amp.autocast():
result = pipe(r"L:\random\audio.mp3", generate_kwargs={"language": "german"})
print(result["text"])
```
### Framework versions
- PEFT 0.7.1 |