File size: 1,042 Bytes
8fafa40 9af51c5 8fafa40 9af51c5 3b9e89d 8fafa40 2ae117c 8fafa40 1f93bef 8fafa40 1f93bef 8fafa40 1f93bef 8fafa40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
library_name: peft
base_model: openai/whisper-large-v3
---
# Model Card for Model ID
As of our knowledge SOTA in swiss german with wer=14.269151618793657 and normalized_wer=12.800897299473698.
## Model Details
Trained on RTX 3070 for 30 hours using SwissDial all Dialects with following guide: https://github.com/Vaibhavs10/fast-whisper-finetuning/blob/main/Whisper_w_PEFT.ipynb
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Flurin17
- **Language(s) (NLP):** swiss-german
- **License:** IDK ask openai
- **Finetuned from model [optional]:** openai/whisper-large-v3
### Model Sources [optional]
## Uses
from transformers import AutomaticSpeechRecognitionPipeline
import torch
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
with torch.cuda.amp.autocast():
result = pipe(r"L:\Coding\random\audio.mp3", generate_kwargs={"language": "german"})
print(result["text"])
### Framework versions
- PEFT 0.7.1 |