clement-cvll commited on
Commit
8685810
·
verified ·
1 Parent(s): 07a484e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -170
README.md CHANGED
@@ -2,192 +2,54 @@
2
  library_name: transformers
3
  tags:
4
  - math
 
 
5
  license: mit
6
  datasets:
7
- - clement-cvll/QWQ-LongCOT-AIMO
8
  base_model:
9
  - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
 
 
10
  ---
11
 
12
- # Model Card for Model ID
13
 
14
- <!-- Provide a quick summary of what the model is/does. -->
15
 
 
16
 
 
17
 
18
- ## Model Details
19
 
20
- ### Model Description
21
 
22
- <!-- Provide a longer summary of what this model is. -->
23
 
24
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
25
 
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
 
34
- ### Model Sources [optional]
 
 
35
 
36
- <!-- Provide the basic links for the model. -->
 
 
37
 
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
41
 
42
- ## Uses
43
 
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
- ### Direct Use
47
-
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
-
58
- ### Out-of-Scope Use
59
-
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
-
70
- ### Recommendations
71
-
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
-
76
- ## How to Get Started with the Model
77
-
78
- Use the code below to get started with the model.
79
-
80
- [More Information Needed]
81
-
82
- ## Training Details
83
-
84
- ### Training Data
85
-
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Training Procedure
91
-
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
-
94
- #### Preprocessing [optional]
95
-
96
- [More Information Needed]
97
-
98
-
99
- #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
-
109
- ## Evaluation
110
-
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Technical Specifications [optional]
148
-
149
- ### Model Architecture and Objective
150
-
151
- [More Information Needed]
152
-
153
- ### Compute Infrastructure
154
-
155
- [More Information Needed]
156
-
157
- #### Hardware
158
-
159
- [More Information Needed]
160
-
161
- #### Software
162
-
163
- [More Information Needed]
164
-
165
- ## Citation [optional]
166
-
167
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
168
-
169
- **BibTeX:**
170
-
171
- [More Information Needed]
172
-
173
- **APA:**
174
-
175
- [More Information Needed]
176
-
177
- ## Glossary [optional]
178
-
179
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
180
-
181
- [More Information Needed]
182
-
183
- ## More Information [optional]
184
-
185
- [More Information Needed]
186
-
187
- ## Model Card Authors [optional]
188
-
189
- [More Information Needed]
190
-
191
- ## Model Card Contact
192
-
193
- [More Information Needed]
 
2
  library_name: transformers
3
  tags:
4
  - math
5
+ - qwen2
6
+ - aimo
7
  license: mit
8
  datasets:
9
+ - Floppanacci/QWQ-LongCOT-AIMO
10
  base_model:
11
  - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
12
+ language:
13
+ - en
14
  ---
15
 
16
+ # DeepSeek-R1-Distill-Qwen-7B Fine-tuned for AIMO Math Problems
17
 
18
+ This model is a fine-tuned version of `deepseek-ai/DeepSeek-R1-Distill-Qwen-7B` on the [`Floppanacci/QWQ-LongCOT-AIMO`](https://huggingface.co/datasets/Floppanacci/QWQ-LongCOT-AIMO) dataset.
19
 
20
+ ## Model Description
21
 
22
+ The model was fine-tuned to improve performance on mathematical reasoning tasks, particularly those involving step-by-step solutions (Chain-of-Thought) similar to problems found in the [AI Mathematical Olympiad (AIMO)](https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2) competition.
23
 
24
+ It's trained on a dataset containing ~30k math questions paired with detailed solutions.
25
 
26
+ An [AWQ quantized version](https://huggingface.co/Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci-AWQ) is also available for faster inference and reduced memory usage.
27
 
28
+ ## How to Use
29
 
30
+ ```python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+ import torch
33
 
34
+ model_id = "Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci"
35
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
36
+ model = AutoModelForCausalLM.from_pretrained(
37
+ model_id,
38
+ torch_dtype=torch.bfloat16, # or torch.float16
39
+ device_map="auto"
40
+ )
41
 
42
+ # Example Prompt (adjust based on how the model expects input)
43
+ prompt = "Question: What is the value of $2+2$? Answer:"
44
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
45
 
46
+ # Generate
47
+ outputs = model.generate(**inputs, max_new_tokens=8192, temperature=0.7, do_sample=True)
48
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
49
 
50
+ print(response)
51
+ ```
 
52
 
53
+ ## Training Data
54
 
55
+ The model was fine-tuned on the train split of the [`Floppanacci/QWQ-LongCOT-AIMO`](https://huggingface.co/datasets/Floppanacci/QWQ-LongCOT-AIMO) dataset (29.5k examples).