File size: 1,342 Bytes
919b42f
 
 
 
 
 
 
 
d0dc0e9
 
919b42f
 
 
 
 
 
d0dc0e9
919b42f
d0dc0e9
919b42f
 
 
 
 
d0dc0e9
919b42f
 
 
 
 
 
 
 
 
d0dc0e9
919b42f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: apache-2.0
tags:
- physics
- diffusion-model
- quantum-information
- quantum-circuits
- genQC
pipeline_tag: other
library_name: genQC
---

# Compile discrete-continuous quantum circuits 3 to 5 qubits

Paper: ["Synthesis of discrete-continuous quantum circuits with multimodal diffusion models"](https://www.arxiv.org/abs/2506.01666).

Project page: https://florianfuerrutter.github.io/genQC/

![](https://github.com/FlorianFuerrutter/genQC/blob/main/src/webpage/assets/qft_4qubit_circuit_15s_wpause.gif?raw=true)

## Key Features and limitations

- Unitary compilation from **3 to 5 qubits**
- Quantum circuits up to **32 gates**
- Training details in the [\\[paper-arxiv\\]](https://www.arxiv.org/abs/2506.01666)

## Usage

The pre-trained model pipeline can be loaded with [`genQC`](https://github.com/FlorianFuerrutter/genQC). First install or upgrade [`genQC`](https://github.com/FlorianFuerrutter/genQC) using

``` sh
pip install -U genQC
```

Guides on how to use this model can be found in the [\\[tutorials\\]](https://florianfuerrutter.github.io/genQC/examples/tutorials.html) on the GitHub repository of [`genQC`](https://github.com/FlorianFuerrutter/genQC).

## License

The model weights in this repository are licensed under the [Apache License 2.0](https://github.com/FlorianFuerrutter/genQC/blob/main/LICENSE.txt).