File size: 7,284 Bytes
c6f712e
 
 
 
a819eca
 
 
cdd3b05
94526f6
a819eca
12ba659
a819eca
 
 
 
 
f2cbcc4
a819eca
 
 
c16a928
a819eca
 
c16a928
 
 
 
 
 
a819eca
 
 
c16a928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a819eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16a928
a819eca
 
 
 
 
 
c16a928
a819eca
 
c16a928
a819eca
 
 
 
 
 
 
 
 
 
c16a928
a819eca
 
 
 
c16a928
 
a819eca
 
c16a928
 
 
 
 
 
 
a819eca
 
c16a928
 
 
 
 
a819eca
 
 
 
c16a928
 
 
 
a819eca
 
c16a928
 
 
 
 
a819eca
 
c16a928
 
 
 
a819eca
 
 
 
c16a928
 
 
 
a819eca
 
 
 
c16a928
a819eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16a928
 
 
 
 
 
 
 
a819eca
 
 
c16a928
 
 
 
 
a819eca
 
 
 
 
 
 
 
 
 
 
 
c16a928
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
license: apache-2.0
datasets:
- common-pile/wikimedia_filtered
language:
- en
library_name: transformers
tags:
- pre-train
- custom_code
- SnowflakeCore
pipeline_tag: text-generation
---

# SnowflakeCore-G1-Tiny2

A improve version of SnowflakeCore-G1-Tiny custom GPT-style transformer language model built from scratch using PyTorch, trained on the common-pile/wikimedia\_filtered dataset.

## Model Overview

SnowflakeCore-G1-Tiny2 is a GPT-style autoregressive transformer model with **\~400M parameters** designed for text generation tasks.

### Key Features

* **2048 token context window** for extended conversations
* **Mixed precision training** (BF16/FP16) for efficiency
* **Custom attention implementation** with fused operations
* **Early stopping mechanisms** for optimal training
* **Gradient accumulation** for effective large batch training

### Architecture Specifications

| Component       | Value                      |
| --------------- | -------------------------- |
| Model Type      | Autoregressive Transformer |
| Parameters      | \~400M                     |
| Layers          | 24                         |
| Hidden Size     | 1024                       |
| Attention Heads | 16                         |
| Head Dimension  | 64                         |
| FFN Dimension   | 4096                       |
| Context Length  | 2048 tokens                |
| Vocabulary Size | 50,257 (GPT-2 tokenizer)   |

## Model Benchmarks

The following benchmarks compare `SnowflakeCore-G1-Tiny2`, its predecessor, and GPT-2 on key performance and text quality metrics.

### Performance & Quality Metrics

| Model                      | Params | Size (MB) | Speed (tok/s) | Vocab Div. | Dist. Bigrams | Dist. Trigrams | Bigram Repet. | Trigram Repet. |
| -------------------------- | ------ | --------- | ------------- | ---------- | ------------- | -------------- | ------------- | -------------- |
| **SnowflakeCore-G1-Tiny2** | 355.9M | 1357.54   | 22.13         | **0.3440** | **0.7408**    | **0.8834**     | **0.2592**    | **0.1166**     |
| SnowflakeCore-G1-Tiny      | 355.9M | 1357.54   | 22.12         | 0.2780     | 0.6111        | 0.7421         | 0.3889        | 0.2579         |
| GPT-2 (small)              | 124.4M | 474.70    | **47.73**     | 0.2590     | 0.6408        | 0.7946         | 0.3592        | 0.2054         |

> **Notes:**
>
> * Vocabulary Diversity = unique tokens / total tokens
> * Distinct N-grams = unique n-grams / total n-grams
> * Lower repetition rates indicate better text novelty

### Memory Usage (CPU)

All models report `N/A` for CPU memory usage across all sequence lengths.

| Sequence Length | SnowflakeCore-G1-Tiny | SnowflakeCore-G1-Tiny2 | GPT-2 |
| --------------- | --------------------- | ---------------------- | ----- |
| 128             | N/A (CPU)             | N/A (CPU)              | N/A   |
| 512             | N/A (CPU)             | N/A (CPU)              | N/A   |
| 1024            | N/A (CPU)             | N/A (CPU)              | N/A   |
| 2048            | N/A (CPU)             | N/A (CPU)              | N/A   |

## Quick Start

### Installation

```bash
pip install torch transformers # if not already installed
```

### Basic Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "FlameF0X/SnowflakeCore-G1-Tiny2",
    trust_remote_code=True,
    force_download=True,
    use_safetensors=True,
)
tokenizer = AutoTokenizer.from_pretrained(
    "FlameF0X/SnowflakeCore-G1-Tiny2",
    trust_remote_code=True,
    force_download=True,
    use_safetensors=True,
)

def custom_greedy_generate(prompt, max_length=50):
    model.eval()
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    generated = input_ids

    with torch.no_grad():
        for _ in range(max_length):
            outputs = model(input_ids=generated)
            next_token_logits = outputs["logits"][:, -1, :]
            next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
            generated = torch.cat((generated, next_token_id), dim=1)

            if next_token_id.item() == tokenizer.eos_token_id:
                break

    return tokenizer.decode(generated[0], skip_special_tokens=True)

# Generate text
prompt = "Once upon a time"
result = custom_greedy_generate(prompt)
print(result)
```

### Fine-Tuning

<code>... (same fine-tuning code as above) ...</code>

## Training Details

### Dataset

* **Source**: [common-pile/wikimedia\_filtered](https://huggingface.co/datasets/common-pile/wikimedia_filtered)

### Training Configuration

* **Framework**: PyTorch with mixed precision (BF16/FP16)
* **Optimizer**: AdamW (learning rate: 2e-4)
* **Batch Size**: 1 with gradient accumulation (32 steps)
* **Context Window**: 2048 tokens
* **Validation Split**: 10%
* **Early Stopping**: Implemented at epoch and step levels

### Performance Monitoring

* Training loss tracked per epoch with perplexity calculation
* Full validation after each epoch
* Step-level monitoring every 500 steps
* Comprehensive metrics saved in `training_metrics.json`

## Technical Implementation

### Attention Mechanism

* **Causal Masking**: Supports autoregressive generation
* **Key Padding Mask**: Enables batched inference
* **Scaled Dot-Product**: Head dimension normalization included

### Memory Optimization

* **Fused Operations**: Reduces memory fragmentation
* **Mixed Precision**: 30-40% memory reduction
* **Gradient Accumulation**: Simulates larger batch sizes
* **Optional Quantization**: Further model compression

### Training Stability

* **Gradient Clipping**: Prevents exploding gradients
* **Automatic Loss Scaling**: Mixed precision stability
* **Early Stopping**: Prevents overfitting with patience mechanisms

## System Requirements

### Memory Requirements

* **Training**: 16-24GB VRAM (precision dependent)
* **Inference**: 1-6GB VRAM for standard generation
* **Context**: Maximum 2048 tokens input length

### Generation Parameters

Default configuration:

```json
{
  "do_sample": true,
  "temperature": 1.0,
  "top_p": 0.9,
  "top_k": 50,
  "max_new_tokens": 50,
  "pad_token_id": 50256,
  "eos_token_id": 50256
}
```

## Model Files

The repository contains:

* `pytorch_model.bin` - PyTorch model weights
* `model.safetensors` - SafeTensors format weights
* `config.json` - Model configuration
* `generation_config.json` - Generation parameters
* `training_metrics.json` - Training statistics
* `tokenizer.json` - Tokenizer configuration
* `vocab.json` & `merges.txt` - Vocabulary files

## Limitations

* **No HuggingFace `.generate()` support**: Use custom generation function
* **Output Quality**: May produce repetitive or nonsensical text for some prompts
* **Hardware Requirements**: GPU recommended for practical inference
* **Context Window**: Limited to 2048 tokens
* **Dataset Dependency**: Performance tied to Mixture-of-Thoughts dataset quality

## Example Output

```
N/A
```

## Support Me

You can support me via [Ko-fi](https://ko-fi.com/flamef0x) or you can try my [Vast.ai](https://cloud.vast.ai/?ref_id=222345&creator_id=222345&name=Efficient%20Pretraining%20GPU%20Template) template!

### Small meta-data

* Release date: July 21, 2025.