import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel, PretrainedConfig from typing import Optional, Tuple # Optional: import custom config if present try: from .configuration_snowflake_core import SnowflakeCoreConfig except ImportError: SnowflakeCoreConfig = PretrainedConfig class FusedSelfAttention(nn.Module): def __init__(self, embed_dim, num_heads): super().__init__() self.num_heads = num_heads self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == embed_dim ), "embed_dim must be divisible by num_heads" self.qkv_proj = nn.Linear(embed_dim, 3 * embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) def forward(self, x, attn_mask=None, key_padding_mask=None): B, T, C = x.size() qkv = self.qkv_proj(x) # [B, T, 3 * C] qkv = qkv.reshape(B, T, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # Each: [B, num_heads, T, head_dim] attn_scores = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) # [B, num_heads, T, T] if attn_mask is not None: attn_scores = attn_scores + attn_mask.unsqueeze(0).unsqueeze(0).to(attn_scores.dtype) if key_padding_mask is not None: attn_scores = attn_scores.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf')) attn_probs = F.softmax(attn_scores, dim=-1) attn_output = attn_probs @ v # [B, num_heads, T, head_dim] attn_output = attn_output.transpose(1, 2).reshape(B, T, C) return self.out_proj(attn_output) class GPTBlock(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.1): super().__init__() self.ln1 = nn.LayerNorm(embed_dim) self.attn = FusedSelfAttention(embed_dim, num_heads) self.dropout1 = nn.Dropout(dropout) self.ln2 = nn.LayerNorm(embed_dim) self.mlp = nn.Sequential( nn.Linear(embed_dim, 4 * embed_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(4 * embed_dim, embed_dim), ) self.dropout2 = nn.Dropout(dropout) def forward(self, x, attn_mask=None, key_padding_mask=None): h = self.ln1(x) attn_output = self.attn(h, attn_mask=attn_mask, key_padding_mask=key_padding_mask) x = x + self.dropout1(attn_output) x = x + self.dropout2(self.mlp(self.ln2(x))) return x class SnowflakeCoreG1(PreTrainedModel): config_class = SnowflakeCoreConfig supports_gradient_checkpointing = True def __init__(self, config): super().__init__(config) self.vocab_size = config.vocab_size self.embed_dim = config.embed_dim self.num_heads = config.num_heads self.num_layers = config.num_layers self.max_length = config.max_length self.ffn_dim = getattr(config, 'ffn_dim', 4 * config.embed_dim) self.dropout = getattr(config, 'dropout', 0.1) self.embed = nn.Embedding(self.vocab_size, self.embed_dim) self.pos_embed = nn.Embedding(self.max_length, self.embed_dim) self.dropout_layer = nn.Dropout(self.dropout) self.blocks = nn.ModuleList([ GPTBlock(self.embed_dim, self.num_heads, self.dropout) for _ in range(self.num_layers) ]) self.ln_f = nn.LayerNorm(self.embed_dim) self.lm_head = nn.Linear(self.embed_dim, self.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.embed def set_input_embeddings(self, value): self.embed = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, **kwargs ) -> Tuple: B, T = input_ids.size() pos = torch.arange(0, T, device=input_ids.device).unsqueeze(0) x = self.embed(input_ids) + self.pos_embed(pos) x = self.dropout_layer(x) causal_mask = torch.triu(torch.ones(T, T, device=input_ids.device), diagonal=1).bool() causal_mask = causal_mask.masked_fill(causal_mask, float('-inf')) key_padding_mask = None if attention_mask is not None: key_padding_mask = attention_mask == 0 for block in self.blocks: x = block(x, attn_mask=causal_mask, key_padding_mask=key_padding_mask) x = self.ln_f(x) logits = self.lm_head(x) loss = None if labels is not None: shift_logits = logits[:, :-1, :].contiguous().view(-1, self.vocab_size) shift_labels = labels[:, 1:].contiguous().view(-1) loss = F.cross_entropy(shift_logits, shift_labels, ignore_index=self.config.pad_token_id) if loss is not None: return {"loss": loss, "logits": logits} return {"logits": logits} @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, config=None, **kwargs): return super().from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)