Update code to generate text using TextStreamer
Browse files
README.md
CHANGED
@@ -100,9 +100,15 @@ top_k: 5
|
|
100 |
## Usage Example
|
101 |
|
102 |
```python
|
103 |
-
from transformers import pipeline
|
|
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
messages = [
|
108 |
{
|
@@ -123,16 +129,27 @@ messages = [
|
|
123 |
},
|
124 |
]
|
125 |
|
126 |
-
prompt =
|
127 |
-
|
128 |
-
output = generate(
|
129 |
-
prompt,
|
130 |
-
max_new_tokens=256,
|
131 |
-
penalty_alpha=0.5,
|
132 |
-
top_k=5,
|
133 |
)
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
```
|
137 |
|
138 |
## How it was trained
|
|
|
100 |
## Usage Example
|
101 |
|
102 |
```python
|
103 |
+
from transformers import pipeline, TextStreamer, AutoModelForCausalLM, AutoTokenizer
|
104 |
+
import torch
|
105 |
|
106 |
+
model_path = "Felladrin/TinyMistral-248M-Chat-v3"
|
107 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
109 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to(device)
|
110 |
+
streamer = TextStreamer(tokenizer)
|
111 |
+
generate = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
112 |
|
113 |
messages = [
|
114 |
{
|
|
|
129 |
},
|
130 |
]
|
131 |
|
132 |
+
prompt = tokenizer.apply_chat_template(
|
133 |
+
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
|
136 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
137 |
+
|
138 |
+
outputs = model.generate(
|
139 |
+
inputs.input_ids,
|
140 |
+
attention_mask=inputs.attention_mask,
|
141 |
+
max_length=tokenizer.model_max_length,
|
142 |
+
streamer=streamer,
|
143 |
+
eos_token_id=tokenizer.eos_token_id,
|
144 |
+
pad_token_id=tokenizer.pad_token_id,
|
145 |
+
do_sample=True,
|
146 |
+
temperature=0.6,
|
147 |
+
top_p=0.8,
|
148 |
+
top_k=0,
|
149 |
+
min_p=0.1,
|
150 |
+
typical_p=0.2,
|
151 |
+
repetition_penalty=1.176,
|
152 |
+
)
|
153 |
```
|
154 |
|
155 |
## How it was trained
|