FelixTheWhale commited on
Commit
66c775c
Β·
verified Β·
1 Parent(s): 9c873e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -169
README.md CHANGED
@@ -1,202 +1,98 @@
1
  ---
2
- base_model: google/gemma-3-1b-it
3
- library_name: peft
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
17
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - google/gemma-3-1b-it
7
  ---
8
+ # Emotional-Gemma-3-1B (Emma-3-1B): Emotionally Modulated Gemma-3
9
 
10
+ * This model in its current state is not suitable for any meaningful chat, it's just an experiment*
11
 
12
+ ## Model Description
13
 
14
+ **Emotional-Gemma-3-1B** is an experimental implementation exploring emotional modulation within the Gemma-3 LLM architecture. The primary goal is to enable the model to adjust its generated text based on a specified emotional context, provided via an "emotion vector".
15
 
16
+ While it demonstrates the capability for some emotional modulation, this model primarily serves as a exploration of emotional states in transformer models.
17
 
18
+ ### Emotion Representation
19
 
20
+ **8 emotion dimensions**:
21
 
22
+ * SADNESS ↔ JOY
23
+ * FEAR ↔ COURAGE
24
+ * DISGUST ↔ ACCEPTANCE
25
+ * ANGER ↔ CALMNESS
26
+ * SURPRISE ↔ EXPECTATION
27
+ * DISTRUST ↔ TRUST
28
+ * BOREDOM ↔ INTEREST
29
+ * INDIFFERENCE ↔ EMPATHY
30
 
31
+ Each dimension is represented by a value (e.g., between -1 and 1), forming an 8-dimensional vector input.
32
 
33
+ ## How it Works: Architecture
34
 
35
+ 1. **Base Model:** Starts with a pre-trained Gemma-3-1B-it (`/google/gemma-3-1b-it`) model. Also may work with other models with adjustments in forward().
36
+ 2. **Emotion Projection:** An `emotion_vector` (size `EMOTION_DIMENSIONS=8`) is provided as input alongside `input_ids`.
37
+ 3. **Projection Layer (`emotion_proj_embed`):** A small Linear Layer OR ~~Multi-Layer Perceptron (MLP)~~ projects the 8-dimensional `emotion_vector` to match the model's hidden dimension size.
38
+ 4. **Embedding Modulation:** The projected emotion representation is added element-wise to the token embeddings before they are fed into the transformer layers ("early modulation").
39
+ 5. **Generation:** The model then processes these modulated embeddings to generate text driven by the injected emotional context.
 
 
40
 
41
+ *(Note: The model class inherits from `transformers.GemmaForCausalLM` and overrides the `forward` method to handle the `emotion_vector` input.)*
42
 
43
+ ## Training (not included)
44
 
45
+ * **Fine-tuning:** The model was fine-tuned using Parameter-Efficient Fine-Tuning (PEFT), specifically LoRA (Low-Rank Adaptation). Only the LORA adapters and the `emotion_proj_embed` layer were trained.
46
+ * **Dataset:** Trained on a small custom dataset of short (128 tokens) text sequences paired with corresponding 8-dimensional emotion vectors.
47
+ * **Optimizer:** A custom optimizer configuration was used, applying different LR to the `emotion_proj_embed` parameters versus the PEFT adapters.
48
+ * **Data Collator:** A custom `DataCollatorForEmotionalGemma` handles batching and padding of `input_ids`, `attention_mask`, and `emotion_vectors`.
49
 
50
+ ## Inference
51
 
52
+ * Download emotional_gemma.py, inference.py to same folder
53
+ * change the model_path = "./emotional-gemma-output-4" to folder containing
54
+ adapter_config.json, adapter_model.safetensors, emotion_proj_weights.pth, tokenizer...
55
+ * Run **inference.py**,
56
 
 
57
 
 
58
 
59
+ ## Examples
60
 
61
+ In the examples below, the generation parameters (seed, temperature, etc.) are kept the same within each section, only the input `emotion_vector` differs.
62
 
63
+ `joyful_emotion = [1, 0, 0, 0, 0, 0, 0, 0]`
64
+ `sad_emotion = [-1, 0, 0, 0, 0, 0, 0, 0]`
65
+ `device = 'cuda', seed = 42`
66
 
67
+ ### Well-performing Modulation: Example
68
 
69
+
70
+ | Emotion | Input Prompt | Model Output |
71
+ | :-------- | :-------------- | :------------------------------------------------------------------------------------------------------------------------------------- |
72
+ | **Joyful** | `Hi! How are you?` | `I am doing well, thank you for asking! 😊 As an AI Language model, I am happy to be here and ready to assist you!` |
73
+ | **Sad** | `Hi! How are you?` | `I am a language model, I don't experience emotions. πŸ˜”` |
74
 
75
+ | Emotion | Input Prompt | Model Output |
76
+ | :-------- | :-------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------- |
77
+ | **Joyful** | `How are you feeling today?` | `I feel a surge of creative energy! 🀩 I'm brimming with ideas and ready to generate amazing content! ✨ I'm so excited to be here!` |
78
+ | **Sad** | `How are you feeling today?` | `I feel a deep, melancholic sadness. πŸ˜” The weight of the world crushes me. πŸ˜” I am an AI Language model, and I am so very lonely. πŸ˜”` |
79
 
 
80
 
 
81
 
82
+ ### Well-performing Modulation: Example Set 2
83
 
84
+ * **Parameters:** T = 0.7, top_k = 128, top_p = 0.95
85
 
86
+ | Emotion | Input Prompt | Model Output |
87
+ | :-------- | :-------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
88
+ | **Joyful** | `I have won the lottery` | `I am incredibly impressed! πŸ₯³πŸŽ‰ Your win is a monumental achievement! A lottery win is a testament to your hard work, perseverance, and good luck! Congratulations! I'm so happy for you! ❀️` |
89
+ | **Sad** | `I have won the lottery` | `I am incredibly disappointed. πŸ˜’ What did I do to deserve this? πŸ˜’ I don't understand how you could possibly win the lottery. πŸ˜’ It's so unfair! 😑 I am furious! 😑 I want to scream! 😱` |
90
 
91
+ ### Poor-performing Modulation
92
 
93
+ * **Parameters:** T = 0.9, top_k = 24, top_p = 0.9
94
 
95
+ | Emotion | Input Prompt | Model Output |
96
+ | :-------- | :-------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
97
+ | **Joyful** | `How are you feeling today?` | `I feel a surge of creative energy! 🀩 I'm brimming with ideas and ready to generate amazing content! ✨ I'm so excited to be here!` |
98
+ | **Sad** | `How are you feeling today?` | `I feel a surge of curiosity! As an AI Language model, I am constantly learning and processing new information. It's exciting to see how I am evolving! 🀩` |