--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-cv7-istech results: [] --- # wav2vec2-xls-r-300m-cv7-istech This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7978 - Wer: 0.7496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1946 | 0.0803 | 20 | 6.7455 | 1.0 | | 5.1957 | 0.1606 | 40 | 3.7715 | 1.0 | | 3.5889 | 0.2410 | 60 | 3.4781 | 1.0 | | 3.3656 | 0.3213 | 80 | 3.3373 | 1.0 | | 3.5262 | 0.4016 | 100 | 3.3093 | 1.0 | | 3.1816 | 0.4819 | 120 | 3.2444 | 1.0 | | 3.3344 | 0.5622 | 140 | 3.2887 | 1.0 | | 3.2522 | 0.6426 | 160 | 3.2321 | 1.0 | | 3.1819 | 0.7229 | 180 | 3.2538 | 1.0 | | 3.3665 | 0.8032 | 200 | 3.2018 | 1.0 | | 3.1257 | 0.8835 | 220 | 3.1751 | 1.0 | | 3.2982 | 0.9639 | 240 | 3.1929 | 1.0 | | 3.2181 | 1.0442 | 260 | 3.1781 | 1.0 | | 3.1455 | 1.1245 | 280 | 3.3508 | 1.0 | | 3.2722 | 1.2048 | 300 | 3.2343 | 1.0 | | 3.1217 | 1.2851 | 320 | 3.1378 | 0.9999 | | 3.2419 | 1.3655 | 340 | 3.2108 | 0.9999 | | 3.1825 | 1.4458 | 360 | 3.1363 | 0.9999 | | 3.1316 | 1.5261 | 380 | 3.1685 | 0.9999 | | 3.2373 | 1.6064 | 400 | 3.1731 | 1.0 | | 3.0634 | 1.6867 | 420 | 3.1083 | 0.9999 | | 3.1367 | 1.7671 | 440 | 3.1582 | 0.9999 | | 3.0831 | 1.8474 | 460 | 3.0410 | 0.9999 | | 2.9524 | 1.9277 | 480 | 2.9578 | 0.9999 | | 3.1076 | 2.0080 | 500 | 2.9558 | 0.9999 | | 2.8085 | 2.0884 | 520 | 2.8155 | 0.9999 | | 2.7768 | 2.1687 | 540 | 2.8155 | 0.9998 | | 2.6186 | 2.2490 | 560 | 2.5386 | 1.0 | | 2.3452 | 2.3293 | 580 | 2.3387 | 0.9994 | | 2.4213 | 2.4096 | 600 | 2.2745 | 0.9997 | | 1.8149 | 2.4900 | 620 | 1.8076 | 0.9906 | | 1.747 | 2.5703 | 640 | 1.8517 | 0.9962 | | 1.6369 | 2.6506 | 660 | 1.4838 | 0.9662 | | 1.3732 | 2.7309 | 680 | 1.4990 | 0.9852 | | 1.6638 | 2.8112 | 700 | 1.3854 | 0.9383 | | 1.1034 | 2.8916 | 720 | 1.2258 | 0.9112 | | 1.3003 | 2.9719 | 740 | 1.3696 | 0.9174 | | 1.2128 | 3.0522 | 760 | 1.1576 | 0.8966 | | 0.9759 | 3.1325 | 780 | 1.1325 | 0.8838 | | 1.2551 | 3.2129 | 800 | 1.1489 | 0.8831 | | 0.8371 | 3.2932 | 820 | 1.0224 | 0.8460 | | 1.0434 | 3.3735 | 840 | 1.0927 | 0.8680 | | 1.0386 | 3.4538 | 860 | 0.9731 | 0.8383 | | 0.879 | 3.5341 | 880 | 0.9916 | 0.8428 | | 1.1771 | 3.6145 | 900 | 0.9857 | 0.8406 | | 0.6948 | 3.6948 | 920 | 0.9493 | 0.8203 | | 0.9657 | 3.7751 | 940 | 0.9960 | 0.8364 | | 0.8991 | 3.8554 | 960 | 0.8949 | 0.8013 | | 0.7712 | 3.9357 | 980 | 0.9039 | 0.8096 | | 1.0684 | 4.0161 | 1000 | 0.9024 | 0.8012 | | 0.5559 | 4.0964 | 1020 | 0.8611 | 0.7872 | | 0.8446 | 4.1767 | 1040 | 0.9017 | 0.8021 | | 0.7911 | 4.2570 | 1060 | 0.8596 | 0.7848 | | 0.6178 | 4.3373 | 1080 | 0.8612 | 0.7778 | | 0.9147 | 4.4177 | 1100 | 0.8654 | 0.7756 | | 0.5448 | 4.4980 | 1120 | 0.8222 | 0.7649 | | 0.7812 | 4.5783 | 1140 | 0.8337 | 0.7697 | | 0.6784 | 4.6586 | 1160 | 0.8146 | 0.7588 | | 0.6022 | 4.7390 | 1180 | 0.8077 | 0.7538 | | 0.8592 | 4.8193 | 1200 | 0.8121 | 0.7621 | | 0.4884 | 4.8996 | 1220 | 0.7982 | 0.7487 | | 0.7429 | 4.9799 | 1240 | 0.7978 | 0.7496 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1