FatemehBehrad commited on
Commit
1ad489c
·
verified ·
1 Parent(s): 37e4770
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -53,9 +53,9 @@ Charm Tokenizer has the following input args:
53
  * patch_selection (str): The method for selecting important patches
54
  * Options: 'saliency', 'random', 'frequency', 'gradient', 'entropy', 'original'.
55
  * training_dataset (str): Used to set the number of ViT input tokens to match a specific training dataset from the paper.
56
- * Aesthetic assessment datasets: 'aadb', 'tad66k', 'para', 'baid'.
57
  * Quality assessment datasets: 'spaq', 'koniq10k'.
58
- * backbone (str): The ViT backbone model (default: 'facebook/dinov2-small').
59
  * factor (float): The downscaling factor for less important patches (default: 0.5).
60
  * scales (int): The number of scales used for multiscale processing (default: 2).
61
  * random_crop_size (tuple): Used for the 'original' patch selection strategy (default: (224, 224)).
@@ -71,7 +71,7 @@ from Charm_tokenizer.ImageProcessor import Charm_Tokenizer
71
 
72
  img_path = r"img.png"
73
 
74
- charm_tokenizer = Charm_Tokenizer(patch_selection='frequency', training_dataset='tad66k', without_pad_or_dropping=True)
75
  tokens, pos_embed, mask_token = charm_tokenizer.preprocess(img_path)
76
  ```
77
  ___
 
53
  * patch_selection (str): The method for selecting important patches
54
  * Options: 'saliency', 'random', 'frequency', 'gradient', 'entropy', 'original'.
55
  * training_dataset (str): Used to set the number of ViT input tokens to match a specific training dataset from the paper.
56
+ * Aesthetic assessment datasets: 'ava', 'aadb', 'tad66k', 'para', 'baid'.
57
  * Quality assessment datasets: 'spaq', 'koniq10k'.
58
+ * backbone (str): The ViT backbone model (default: 'facebook/dinov2-small' **(for all datasets except for AVA)** and 'facebook/dinov2-large' **(Just for AVA)**.
59
  * factor (float): The downscaling factor for less important patches (default: 0.5).
60
  * scales (int): The number of scales used for multiscale processing (default: 2).
61
  * random_crop_size (tuple): Used for the 'original' patch selection strategy (default: (224, 224)).
 
71
 
72
  img_path = r"img.png"
73
 
74
+ charm_tokenizer = Charm_Tokenizer(patch_selection='frequency', training_dataset='tad66k',backbone='facebook/dinov2-small', without_pad_or_dropping=True)
75
  tokens, pos_embed, mask_token = charm_tokenizer.preprocess(img_path)
76
  ```
77
  ___