Add AVA
Browse files
README.md
CHANGED
@@ -53,9 +53,9 @@ Charm Tokenizer has the following input args:
|
|
53 |
* patch_selection (str): The method for selecting important patches
|
54 |
* Options: 'saliency', 'random', 'frequency', 'gradient', 'entropy', 'original'.
|
55 |
* training_dataset (str): Used to set the number of ViT input tokens to match a specific training dataset from the paper.
|
56 |
-
* Aesthetic assessment datasets: 'aadb', 'tad66k', 'para', 'baid'.
|
57 |
* Quality assessment datasets: 'spaq', 'koniq10k'.
|
58 |
-
* backbone (str): The ViT backbone model (default: 'facebook/dinov2-small')
|
59 |
* factor (float): The downscaling factor for less important patches (default: 0.5).
|
60 |
* scales (int): The number of scales used for multiscale processing (default: 2).
|
61 |
* random_crop_size (tuple): Used for the 'original' patch selection strategy (default: (224, 224)).
|
@@ -71,7 +71,7 @@ from Charm_tokenizer.ImageProcessor import Charm_Tokenizer
|
|
71 |
|
72 |
img_path = r"img.png"
|
73 |
|
74 |
-
charm_tokenizer = Charm_Tokenizer(patch_selection='frequency', training_dataset='tad66k', without_pad_or_dropping=True)
|
75 |
tokens, pos_embed, mask_token = charm_tokenizer.preprocess(img_path)
|
76 |
```
|
77 |
___
|
|
|
53 |
* patch_selection (str): The method for selecting important patches
|
54 |
* Options: 'saliency', 'random', 'frequency', 'gradient', 'entropy', 'original'.
|
55 |
* training_dataset (str): Used to set the number of ViT input tokens to match a specific training dataset from the paper.
|
56 |
+
* Aesthetic assessment datasets: 'ava', 'aadb', 'tad66k', 'para', 'baid'.
|
57 |
* Quality assessment datasets: 'spaq', 'koniq10k'.
|
58 |
+
* backbone (str): The ViT backbone model (default: 'facebook/dinov2-small' **(for all datasets except for AVA)** and 'facebook/dinov2-large' **(Just for AVA)**.
|
59 |
* factor (float): The downscaling factor for less important patches (default: 0.5).
|
60 |
* scales (int): The number of scales used for multiscale processing (default: 2).
|
61 |
* random_crop_size (tuple): Used for the 'original' patch selection strategy (default: (224, 224)).
|
|
|
71 |
|
72 |
img_path = r"img.png"
|
73 |
|
74 |
+
charm_tokenizer = Charm_Tokenizer(patch_selection='frequency', training_dataset='tad66k',backbone='facebook/dinov2-small', without_pad_or_dropping=True)
|
75 |
tokens, pos_embed, mask_token = charm_tokenizer.preprocess(img_path)
|
76 |
```
|
77 |
___
|