simpletuner-v1-full

This is a full rank finetune derived from SG161222/RealVisXL_V5.0.

The main validation prompt used during training was:

a photograph of ohwx woman

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a photograph of ohwx woman
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 500
  • Learning rate: 1e-06
    • Learning rate schedule: polynomial
    • Warmup steps: 1000
  • Max grad norm: 2.0
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

Datasets

my-dataset-1024

  • Repeats: 63
  • Total number of images: 69
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

regularisation-data-1024px

  • Repeats: 0
  • Total number of images: 1000
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: Yes

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'FastFreddi/simpletuner-v1-full'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16

prompt = "a photograph of ohwx woman"
negative_prompt = 'blurry, cropped, ugly'

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")

Exponential Moving Average (EMA)

SimpleTuner generates a safetensors variant of the EMA weights and a pt file.

The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.

The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.

Downloads last month
5
Inference Examples
Examples
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for FastFreddi/simpletuner-v1-full

Finetuned
(2)
this model